Zobrazeno 1 - 10
of 104
pro vyhledávání: '"Chang Heon Kim"'
Publikováno v:
AIMS Mathematics, Vol 7, Iss 5, Pp 8235-8249 (2022)
We suggest a Jacobi form over a number field $ \Bbb Q(\sqrt 5, i) $; for obtaining this, we use a linear code $ C $ over $ R: = \Bbb F_4+u\Bbb F_4 $, where $ u^2 = 0 $. We introduce MacWilliams identities for both complete weight enumerator and symme
Externí odkaz:
https://doaj.org/article/ab423a65e5a64e1387645229cd4a49b4
Publikováno v:
Journal of Number Theory. 238:396-443
We generalize Birch's construction of the Heegner points on X 0 ( N ) to construct new points X 1 ( N ) (and therefore construct points on the abelian varieties associated to J 1 ( N ) ). Then, we show that these points form an Euler system, and we i
Publikováno v:
IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences. :1134-1146
Autor:
SoYoung Choi, Chang Heon Kim
Publikováno v:
Open Mathematics. 20:313-332
Extending our previous work we construct weakly holomorphic Hecke eigenforms whose period polynomials correspond to elements in a basis consisting of odd and even Hecke eigenpolynomials induced by only cusp forms. As an application of our results, we
Publikováno v:
The Ramanujan Journal.
Publikováno v:
The Ramanujan Journal. 57:1253-1275
In this article, we prove that a space of cusp forms of weight 2 with level N and real character $$\chi $$ has dimension 1 if and only if $$\chi $$ is trivial and N is in $$\{11,14,15,17,19,20,21,24,27,32,36,49\},$$ and derive bases for spaces of cus
Publikováno v:
Journal of Number Theory. 217:353-375
The minus space M k ! − ( p ) is defined to be the subspace of the space M k ! ( p ) of weakly holomorphic weight k modular forms for Γ 0 ( p ) consisting of all eigenforms of the Fricke involution W p with eigenvalue −1. In this paper, we study
Publikováno v:
The Ramanujan Journal. 54:219-244
We construct bases of the space of harmonic weak Maass forms of weight $$\kappa \in \frac{1}{2}{\mathbb {Z}}$$ . Using these bases, we obtain a Shintani lift from a positive integral weight harmonic weak Maass form to a half-integral weight harmonic
Autor:
Ho Yun Jung, Chang Heon Kim
Publikováno v:
The Ramanujan Journal. 54:355-383
After Zagier’s significant work (in: Bogomolov and Katzarkov (eds) Motives, polylogarithms and hodge theory, part I, International Press, Somerville, 2002) on traces of singular moduli, Bruinier and Funke (J Reine Angew Math 594:1–33, 2006) gener
Recently, a weak converse theorem for Borcherds' lifting operator of type $O(2,1)$ for $\G_0(N)$ is proved and the logarithmic derivative of a modular form for $\G_0(N)$ is explicitly described in terms of the values of Niebur-Poincar\'e series at it
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d02a7a651fa20747318ae1a102d3b074