Zobrazeno 1 - 10
of 69
pro vyhledávání: '"Chandrashekhar Khare"'
Autor:
CHANDRASHEKHAR KHARE, RAVI RAMAKRISHNA
Publikováno v:
Forum of Mathematics, Sigma, Vol 4 (2016)
Externí odkaz:
https://doaj.org/article/b1ac6357ed88479a828fa1365e00266c
Autor:
CHANDRASHEKHAR KHARE, RAVI RAMAKRISHNA
Publikováno v:
Forum of Mathematics, Sigma, Vol 3 (2015)
Let $p\geqslant 5$ be a prime, and let ${\mathcal{O}}$ be the ring of integers of a finite extension $K$ of $\mathbb{Q}_{p}$ with uniformizer ${\it\pi}$. Let ${\it\rho}_{n}:G_{\mathbb{Q}}\rightarrow \mathit{GL}_{2}\left({\mathcal{O}}/({\it\pi}^{n})\r
Externí odkaz:
https://doaj.org/article/18ba9f881af64328a01d80486fdfc8a7
Publikováno v:
Compositio Mathematica. 157:2046-2088
In his work on modularity theorems, Wiles proved a numerical criterion for a map of rings $R\to T$ to be an isomorphism of complete intersections. He used this to show that certain deformation rings and Hecke algebras associated to a mod $p$ Galois r
Autor:
Chandrashekhar Khare, Michael Larsen
Publikováno v:
Comptes Rendus. Mathématique. 358:1085-1089
If A and B are abelian varieties over a number field K such that there are non-trivial geometric homomorphisms of abelian varieties between reductions of A and B at most primes of K, then there exists a non-trivial (geometric) homomorphism from A to
Publikováno v:
Journal of the London Mathematical Society. 103:250-287
We use Galois cohomology methods to produce optimal mod $p^d$ level lowering congruences to a $p$-adic Galois representation that we construct as a well chosen lift of a given residual mod $p$ representation. Using our explicit Galois cohomology meth
Publikováno v:
Mathematical Research Letters. 27:1669-1696
In recent work, the authors proved a general result on lifting $G$-irreducible odd Galois representations $\mathrm{Gal}(\overline{F}/F) \to G(\overline{\mathbb{F}}_{\ell})$, with $F$ a totally real number field and $G$ a reductive group, to geometric
Autor:
Arnaud Beauville, Oscar García-Prada, Nigel Hitchin, Chandrashekhar Khare, Shrawan Kumar, Herbert Lange, Nitin Nitsure, M S Raghunathan, T R Ramadas, S. Ramanan
Publikováno v:
Notices of the American Mathematical Society. 69:1
We extend the lifting methods of our previous paper to lift reducible odd representations $\bar{\rho}:\mathrm{Gal}(\overline{F}/F) \to G(k)$ of Galois groups of global fields $F$ valued in Chevalley groups $G(k)$. Lifting results, when combined with
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4b066081507d87735996a4c7c0196486
http://arxiv.org/abs/2008.12593
http://arxiv.org/abs/2008.12593
Autor:
Chandrashekhar Khare, Gebhard Böckle
Publikováno v:
Mathematical Research Letters. 24:1605-1632
We study irreducible odd mod $p$ Galois representations $\bar{\rho} \colon \mathrm{Gal}(\overline{F}/F) \to G(\overline{\mathbb{F}}_p)$, for $F$ a totally real number field and $G$ a general reductive group. For $p \gg_{G, F} 0$, we show that any $\b
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a97b16f2dda5adac1640b8625dc449d9
http://arxiv.org/abs/1904.02374
http://arxiv.org/abs/1904.02374