Zobrazeno 1 - 10
of 185
pro vyhledávání: '"Chandrashekhar B"'
This work builds on earlier work of the first three authors where a notion of congruence modules in higher codimension is introduced. The main new results are a criterion for detecting regularity of local rings in terms of congruence modules, and a m
Externí odkaz:
http://arxiv.org/abs/2311.13070
We build on the results of [6] to show that the homology groups $\mathrm{H}_{r_1+r_2}(Y_0(\mathcal{N}_\Sigma),\mathcal{O})_{\mathfrak{m}_\Sigma}$ of arithmetic manifolds are free over certain deformation rings $R_\Sigma$, when there are enough geomet
Externí odkaz:
http://arxiv.org/abs/2208.13097
We define a congruence module $\Psi_A(M)$ associated to a surjective $\mathcal O$-algebra morphism $\lambda\colon A \to \mathcal{O}$, with $\mathcal{O}$ a discrete valuation ring, $A$ a complete noetherian local $\mathcal{O}$-algebra regular at $\mat
Externí odkaz:
http://arxiv.org/abs/2206.08212
We study the splitting fields of the family of polynomials $f_n(X)= X^n-X-1$. This family of polynomials has been much studied in the literature and has some remarkable properties. Serre related the function on primes $N_p(f_n)$, for a fixed $n \leq
Externí odkaz:
http://arxiv.org/abs/2206.08116
We continue our study of the Wiles defect of deformation rings $R$ and Hecke rings $T$ (at a newform $f$) acting on the cohomology of Shimura curves. The Wiles defect at an augmentation $\lambda_f:T \to O$ measures the failure of $R,T$ to be complete
Externí odkaz:
http://arxiv.org/abs/2108.09729
F. Diamond proved a numerical criterion for modules over local rings to be free modules over complete intersection rings. We formulate a refinement of these results using the notion of Wiles defect. A key step in the proof is a formula that expresses
Externí odkaz:
http://arxiv.org/abs/2107.06759
Publikováno v:
Proc. Natl. Acad. Sci. USA 118 (2021), no. 33, e2108064118
We study an analogue of Serre's modularity conjecture for projective representations $\overline{\rho}: \operatorname{Gal}(\overline{K} / K) \rightarrow \operatorname{PGL}_2(k)$, where $K$ is a totally real number field. We prove new cases of this con
Externí odkaz:
http://arxiv.org/abs/2104.14732
We consider lifting of mod p representations to mod p^2 representations in the setting of representations of (i) finite groups; (ii) absolute Galois groups of abstract fields; and (iii) absolute Galois groups of local and global fields.
Comment:
Comment:
Externí odkaz:
http://arxiv.org/abs/2009.01301
If A and B are abelian varieties over a number field K such that there are non-trivial geometric homomorphisms of abelian varieties between reductions of A and B at most primes of K, then there exists a non-trivial (geometric) homomorphism from A to
Externí odkaz:
http://arxiv.org/abs/2009.01435
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.