Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Chakra S Chennubhotla"'
Categorical dimensions of human odor descriptor space revealed by non-negative matrix factorization.
Publikováno v:
PLoS ONE, Vol 8, Iss 9, p e73289 (2013)
In contrast to most other sensory modalities, the basic perceptual dimensions of olfaction remain unclear. Here, we use non-negative matrix factorization (NMF)--a dimensionality reduction technique--to uncover structure in a panel of odor profiles, w
Externí odkaz:
https://doaj.org/article/a8c3e8ea4ac54e47bf95a2961dfcbd6c
Autor:
Arvind Ramanathan, Andrej J Savol, Christopher J Langmead, Pratul K Agarwal, Chakra S Chennubhotla
Publikováno v:
PLoS ONE, Vol 6, Iss 1, p e15827 (2011)
Internal motions enable proteins to explore a range of conformations, even in the vicinity of native state. The role of conformational fluctuations in the designated function of a protein is widely debated. Emerging evidence suggests that sub-groups
Externí odkaz:
https://doaj.org/article/3d9d521691d44c2da215457e4881698a
Autor:
Pratul K. Agarwal, Virginia M. Burger, Chakra S. Chennubhotla, Andrej J. Savol, Arvind Ramanathan
Publikováno v:
Bioinformatics
Motivation: Molecular dynamics (MD) simulations have dramatically improved the atomistic understanding of protein motions, energetics and function. These growing datasets have necessitated a corresponding emphasis on trajectory analysis methods for c
Autor:
Arvind eRamanathan, Laura L. Pullum, Tanner C. Hobson, Christopher G. Stahl, Chad A. Steed, Shannon P. Quinn, Chakra S. Chennubhotla
Publikováno v:
Frontiers in Public Health, Vol 3 (2015)
We describe a data-driven unsupervised machine learning approach to extract geo-temporal co-occurrence patterns of asthma and the flu from large-scale electronic healthcare reimbursement claims (eHRC) datasets. Specifically, we examine the eHRC data
Externí odkaz:
https://doaj.org/article/86e77b1c1f3d44a3a8e4d01413320b94