Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Chai, Tianrui"'
Human gait is considered a unique biometric identifier which can be acquired in a covert manner at a distance. However, models trained on existing public domain gait datasets which are captured in controlled scenarios lead to drastic performance decl
Externí odkaz:
http://arxiv.org/abs/2201.04806
Dance challenges are going viral in video communities like TikTok nowadays. Once a challenge becomes popular, thousands of short-form videos will be uploaded in merely a couple of days. Therefore, virality prediction from dance challenges is of great
Externí odkaz:
http://arxiv.org/abs/2111.03819
Video-based person re-identification (Re-ID) which aims to associate people across non-overlapping cameras using surveillance video is a challenging task. Pedestrian attribute, such as gender, age and clothing characteristics contains rich and supple
Externí odkaz:
http://arxiv.org/abs/2108.06946
Publikováno v:
ICIP 2021
Gait recognition under multiple views is an important computer vision and pattern recognition task. In the emerging convolutional neural network based approaches, the information of view angle is ignored to some extent. Instead of direct view estimat
Externí odkaz:
http://arxiv.org/abs/2108.05524
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Bulten, Wouter, Kartasalo, Kimmo, Chen, Po-Hsuan Cameron, Ström, Peter, Pinckaers, Hans, Nagpal, Kunal, Cai, Yuannan, Steiner, David F., van Boven, Hester, Vink, Robert, Hulsbergen-van de Kaa, Christina, van der Laak, Jeroen, Amin, Mahul B., Evans, Andrew J., van der Kwast, Theodorus, Allan, Robert, Humphrey, Peter A., Grönberg, Henrik, Samaratunga, Hemamali, Delahunt, Brett, Tsuzuki, Toyonori, Häkkinen, Tomi, Egevad, Lars, Demkin, Maggie, Dane, Sohier, Tan, Fraser, Valkonen, Masi, Corrado, Greg S., Peng, Lily, Mermel, Craig H., Ruusuvuori, Pekka, Litjens, Geert, Eklund, Martin, Brilhante, Américo, Çakır, Aslı, Farré, Xavier, Geronatsiou, Katerina, Molinié, Vincent, Pereira, Guilherme, Roy, Paromita, Saile, Günter, Salles, Paulo G. O., Schaafsma, Ewout, Tschui, Joëlle, Billoch-Lima, Jorge, Pereira, Emíio M., Zhou, Ming, He, Shujun, Song, Sejun, Sun, Qing, Yoshihara, Hiroshi, Yamaguchi, Taiki, Ono, Kosaku, Shen, Tao, Ji, Jianyi, Roussel, Arnaud, Zhou, Kairong, Chai, Tianrui, Weng, Nina, Grechka, Dmitry
Publikováno v:
Nature Medicine, 28, 154-163
Nature Medicine, 28, 1, pp. 154-163
Nature medicine, vol 28, iss 1
Radiol Imaging Cancer
Nature Medicine, 28, 1, pp. 154-163
Nature medicine, vol 28, iss 1
Radiol Imaging Cancer
Through a community-driven competition, the PANDA challenge provides a curated diverse dataset and a catalog of models for prostate cancer pathology, and represents a blueprint for evaluating AI algorithms in digital pathology. Artificial intelligenc
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::964d2e0518b7effff8b161db3acd524c
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-182759
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-182759
Autor:
Kong, Jue, Chai, Tianrui
Publikováno v:
ACM International Conference Proceeding Series; 4/23/2020, p1-4, 4p