Zobrazeno 1 - 10
of 70
pro vyhledávání: '"Chae, Eunmi"'
Autor:
Yu, Scarlett S., You, Jiaqi, Bao, Yicheng, Anderegg, Loic, Hallas, Christian, Li, Grace K., Lim, Dongkyu, Chae, Eunmi, Ketterle, Wolfgang, Ni, Kang-Kuen, Doyle, John M.
We report the experimental realization of a conveyor-belt magneto-optical trap for calcium monofluoride (CaF) molecules. The obtained highly-compressed cloud has a mean radius of 64(5) $\mu$m and a peak number density of $3.6(5) \times 10^{10}$ cm$^{
Externí odkaz:
http://arxiv.org/abs/2409.15262
Autor:
Lee, Yongwoong, Chae, Eunmi
Optical tweezers constitute pivotal tools in Atomic, Molecular, and Optical(AMO) physics, facilitating precise trapping and manipulation of individual atoms and molecules. This process affords the capability to generate desired geometries in both one
Externí odkaz:
http://arxiv.org/abs/2401.04893
Autor:
Kim, Lee Yeong, Kang, Do Won, Lee, Jong Chan, Chae, Eunmi, Schöllkopf, Wieland, Zhao, Bum Suk
Thermal energy atom scattering at a surface with grazing incidence conditions is an innovative method for investigating dispersive atom-surface interactions with potential application in quantum sensing interferometry. The complete establishment of t
Externí odkaz:
http://arxiv.org/abs/2311.12416
Autor:
Bao, Yicheng, Yu, Scarlett S., You, Jiaqi, Anderegg, Loïc, Chae, Eunmi, Ketterle, Wolfgang, Ni, Kang-Kuen, Doyle, John M.
Ultracold polar molecules are promising for quantum information processing and searches for physics beyond the Standard Model. Laser cooling to ultracold temperatures is an established technique for trapped diatomic and triatomic molecules. Further c
Externí odkaz:
http://arxiv.org/abs/2309.08706
Autor:
Chae, Eunmi
A recent progress on laser cooling of molecules is summarized. Since the development during 1980s for atomic species, laser cooling has been the very beginning step to cool and trap atoms for frontier research on quantum simulations, quantum sensing
Externí odkaz:
http://arxiv.org/abs/2211.13379
Autor:
Bao, Yicheng, Yu, Scarlett S., Anderegg, Loïc, Chae, Eunmi, Ketterle, Wolfgang, Ni, Kang-Kuen, Doyle, John M.
Due to their intrinsic electric dipole moments and rich internal structure, ultracold polar molecules are promising candidate qubits for quantum computing and for a wide range of quantum simulations. Their long-lived molecular rotational states form
Externí odkaz:
http://arxiv.org/abs/2211.09780
Autor:
Bao, Yicheng, Yu, Scarlett S., Anderegg, Loïc, Burchesky, Sean, Gonzalez-Acevedo, Derick, Chae, Eunmi, Ketterle, Wolfgang, Ni, Kang-Kuen, Doyle, John M.
Optically trapped laser-cooled polar molecules hold promise for new science and technology in quantum information and quantum simulation. Large numerical aperture optical access and long trap lifetimes are needed for many studies, but these requireme
Externí odkaz:
http://arxiv.org/abs/2205.06334
Here, ultra-low relative phase jitters over a wide optical spectrum were achieved for dual Ti:Sapphire optical frequency combs. The two optical frequency combs were independently phase-locked to a Sr optical lattice clock laser delivered through a co
Externí odkaz:
http://arxiv.org/abs/2203.09766
Autor:
Burchesky, Sean, Anderegg, Loic, Bao, Yicheng, Yu, Scarlett S., Chae, Eunmi, Ketterle, Wolfgang, Ni, Kang-Kuen, Doyle, John M.
Publikováno v:
Phys. Rev. Lett. 127, 123202 (2021)
Qubit coherence times are critical to the performance of any robust quantum computing platform. For quantum information processing using arrays of polar molecules, a key performance parameter is the molecular rotational coherence time. We report a 93
Externí odkaz:
http://arxiv.org/abs/2105.15199
Autor:
Anderegg, Loïc, Burchesky, Sean, Bao, Yicheng, Yu, Scarlett S., Karman, Tijs, Chae, Eunmi, Ni, Kang-Kuen, Ketterle, Wolfgang, Doyle, John M.
Harnessing the potential wide-ranging quantum science applications of molecules will require control of their interactions. Here, we use microwave radiation to directly engineer and tune the interaction potentials between ultracold calcium monofluori
Externí odkaz:
http://arxiv.org/abs/2102.04365