Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Chad Tyler Davis"'
Publikováno v:
Journal de Théorie des Nombres de Bordeaux. 30:991-996
Autor:
Chad Tyler Davis
Publikováno v:
Proc. Japan Acad. Ser. A Math. Sci. 93, no. 5 (2017), 37-40
A positive integer $n$ is the area of a Heron triangle if and only if there is a non-zero rational number $\tau$ such that the elliptic curve \begin{equation*} E_{τ}^{(n)}: Y^{2} = X(X-nτ)(X+nτ^{-1}) \end{equation*} has a rational point of order d
Autor:
Blair K. Spearman, Chad Tyler Davis
Publikováno v:
Journal of Algebra and Its Applications. 17:1850197
Consider an irreducible quartic polynomial of the form [Formula: see text], where [Formula: see text] satisfy [Formula: see text] or [Formula: see text], where [Formula: see text] denotes the exact power of a rational prime [Formula: see text] that d
Autor:
Blair K. Spearman, Chad Tyler Davis
Publikováno v:
Proc. Japan Acad. Ser. A Math. Sci. 91, no. 7 (2015), 101-103
It is known that a positive integer $n$ is the area of a right triangle with rational sides if and only if the elliptic curve $E^{(n)}: y^{2} = x(x^{2}-n^{2})$ has a rational point of order different than 2. A generalization of this result states tha