Zobrazeno 1 - 10
of 69
pro vyhledávání: '"Chérif Nouar"'
Publikováno v:
Fluids, Vol 7, Iss 7, p 231 (2022)
In this paper, we focus on the first stage of transition to Rayleigh–Bénard convection in soft-jammed systems (yield stress fluids) confined in a parallelepiped box heated from the bottom. Up to yielding, the material is in a solid-state with a co
Externí odkaz:
https://doaj.org/article/e8ade3238dcb4a5ab6c487b0851cfce7
The present work focuses on the study of mixed convection of a purely viscous shear-thinning fluid in a horizontal annular eccentric duct. The inner and outer cylinders are heated with constant and uniform heat flux densities. The objective of this w
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::58d28782ec28a5a96b21165dc8617caf
http://arxiv.org/abs/2211.01754
http://arxiv.org/abs/2211.01754
Publikováno v:
Physics of Fluids
Physics of Fluids, American Institute of Physics, 2021, 33, pp.114112. ⟨10.1063/5.0070983⟩
Physics of Fluids, American Institute of Physics, 2021, 33, pp.114112. ⟨10.1063/5.0070983⟩
We present an experimental and theoretical study of Rayleigh–Benard convection in shear-thinning fluids with temperature-dependent properties. Experiments were performed using a cylindrical cell with a radius R=60 mm and height adjustable at d=15 a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6f53f2a4982fba50a32b4ccfb2ebdef4
https://hal.archives-ouvertes.fr/hal-03454578
https://hal.archives-ouvertes.fr/hal-03454578
Publikováno v:
Journal of Fluid Mechanics
Journal of Fluid Mechanics, Cambridge University Press (CUP), 2020, 905, ⟨10.1017/jfm.2020.766⟩
Journal of Fluid Mechanics, Cambridge University Press (CUP), 2020, 905, ⟨10.1017/jfm.2020.766⟩
Stability of hexagonal patterns in Rayleigh–Benard convection for shear-thinning fluids with temperature-dependent viscosity is studied in the framework of amplitude equations. The rheological behaviour of the fluid is described by the Carreau mode
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d2f4e0c4546ca9fceb6219763f0595de
https://hal.archives-ouvertes.fr/hal-03017729
https://hal.archives-ouvertes.fr/hal-03017729
Publikováno v:
Physical Review E : Statistical, Nonlinear, and Soft Matter Physics
Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, American Physical Society, 2019, ⟨10.1103/PhysRevE.100.023117⟩
Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, American Physical Society, 2019, ⟨10.1103/PhysRevE.100.023117⟩
International audience; The present paper deals with the Taylor-Couette flow of shear-thinning fluids. It focuses on the first principles understanding the influence of the viscosity stratification and the nonlinear variation of the effective viscosi
Autor:
Ian Frigaard, Chérif Nouar
Publikováno v:
Journal of Non-Newtonian Fluid Mechanics
Journal of Non-Newtonian Fluid Mechanics, Elsevier, 2019, ⟨10.1016/j.jnnfm.2019.02.009⟩
Journal of Non-Newtonian Fluid Mechanics, Elsevier, 2019, ⟨10.1016/j.jnnfm.2019.02.009⟩
The onset of flow in vibrated layer of viscoplastic fluid is investigated theoretically, using a lubrication approximation. The rheological behavior of the fluid is described by the Herschel–Bulkley model. The equation describing the evolution of t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::71590e15349680c3d7977ed67aae890f
https://hal.archives-ouvertes.fr/hal-02408902/file/Faraday_viscoplastic.pdf
https://hal.archives-ouvertes.fr/hal-02408902/file/Faraday_viscoplastic.pdf
Instabilities of convection patterns in a shear-thinning fluid between plates of finite conductivity
Publikováno v:
Physical Review E
Physical Review E, American Physical Society (APS), 2017, 96 (4), pp.43109-43109. ⟨10.1103/PhysRevE.96.043109⟩
Physical Review E, American Physical Society (APS), 2017, 96 (4), pp.43109-43109. ⟨10.1103/PhysRevE.96.043109⟩
International audience; Rayleigh-Bénard convection in a horizontal layer of a non-Newtonian fluid between slabs of arbitrary thickness and finite thermal conductivity is considered. The first part of the paper deals with the primary bifurcation and
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1158101f313a3a6e202087e93ad0081f
https://hal.univ-lorraine.fr/hal-02442198
https://hal.univ-lorraine.fr/hal-02442198
Publikováno v:
Journal of Fluid Mechanics
Journal of Fluid Mechanics, Cambridge University Press (CUP), 2017, 818, pp.595-622. ⟨10.1017/jfm.2017.149⟩
Journal of Fluid Mechanics, Cambridge University Press (CUP), 2017, 818, pp.595-622. ⟨10.1017/jfm.2017.149⟩
In order to model the transition to turbulence in pipe flow of non-Newtonian fluids, the influence of a strongly shear-thinning rheology on the travelling waves with a threefold rotational symmetry of Faisst & Eckhardt (Phys. Rev. Lett., vol. 91, 200
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::85661f8665661e0808d210eace8b87e2
https://hal.univ-lorraine.fr/hal-01517796/document
https://hal.univ-lorraine.fr/hal-01517796/document
Publikováno v:
Journal of Non-Newtonian Fluid Mechanics
Journal of Non-Newtonian Fluid Mechanics, Elsevier, 2017, 241, pp.43-59. ⟨10.1016/j.jnnfm.2017.01.007⟩
Journal of Non-Newtonian Fluid Mechanics, Elsevier, 2017, 241, pp.43-59. ⟨10.1016/j.jnnfm.2017.01.007⟩
Linear stability of Poiseuille flow of Herschel–Bulkley fluid in a cylindrical pipe is studied using modal and non-modal approaches. The first part of the present study thus deals with the classical normal mode approach in which the resulting eigen
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::817b08c19643381f78b832ccc96bb16f
https://hal.archives-ouvertes.fr/hal-02447064
https://hal.archives-ouvertes.fr/hal-02447064
Publikováno v:
Comptes Rendus Mécanique. 340:602-618
Pipe flow of purely viscous shear-thinning fluids is studied using numerical simulations. The rheological behavior is described by the Carreau model. The flow field is decomposed as a base flow and a disturbance. The perturbation equations are then s