Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Cestmir Burdík"'
Autor:
Cestmir Burdík, O Navratil
Publikováno v:
Teoreticheskaya i Matematicheskaya Fizika. 213:95-107
Продолжено недавнее исследование векторов Бете в $RTT$-алгебре типа $sp(4)$. Показано, что векторы Бете можно переписать в другом виде, которы
Publikováno v:
Acta Polytechnica, Vol 64, Iss 4 (2024)
This paper reproduces the result of Elliot, namely that the irreducible finite dimensional representation of the Lie algebra su(3) of highest weight (m, n) is decomposed according to the embedding so(3) ⊂ su(3). First, a realisation (a representati
Externí odkaz:
https://doaj.org/article/b6ec10b9f37a417a8b0baee637b5466c
Publikováno v:
Nuclear Physics B, Vol 965, Iss , Pp 115357- (2021)
A constrained BRST–BV Lagrangian formulation for totally symmetric massless HS fields in a d-dimensional Minkowski space is extended to a non-minimal constrained BRST–BV Lagrangian formulation by using a non-minimal BRST operator Qc|tot with non-
Externí odkaz:
https://doaj.org/article/28f150dc194a433aba74b0f54b234ef0
Autor:
Čestmír Burdík, Ondřej Navrátil
Publikováno v:
Acta Polytechnica, Vol 53, Iss 5 (2013)
Starting from the Verma modules of the algebra B2 we explicitly construct factor representations of the algebra B2 which are connected with the unitary representation of the group SO(3, 2). We find a full set of extremal vectors for representations o
Externí odkaz:
https://doaj.org/article/3cfea8ca3f8842cf8e19ce0640554ee1
Publikováno v:
Symmetry, Integrability and Geometry: Methods and Applications, Vol 6, p 010 (2010)
For the quantum algebra U_q(gl(n+1)) in its reduction on the subalgebra U_q(gl(n)) an explicit description of a Mickelsson-Zhelobenko reduction Z-algebra Z_q(gl(n+1),gl(n)) is given in terms of the generators and their defining relations. Using this
Externí odkaz:
https://doaj.org/article/c5de4243b4bb406a834e951313f3321b
Autor:
Cestmír Burdík, Armen Nersessian
Publikováno v:
Symmetry, Integrability and Geometry: Methods and Applications, Vol 5, p 004 (2009)
Recently, Galajinsky, Lechtenfeld and Polovnikov proposed an elegant group-theoretical transformation of the generic conformal-invariant mechanics to the free one. Considering the classical counterpart of this transformation, we relate this transform
Externí odkaz:
https://doaj.org/article/26ee7655193b491b81c4031d50ef3437