Zobrazeno 1 - 10
of 101
pro vyhledávání: '"Cesar Cadena"'
Publikováno v:
Sensors, Vol 22, Iss 2, p 474 (2022)
Increasing demand for rail transportation results in denser and more high-speed usage of the existing railway network, making new and more advanced vehicle safety systems necessary. Furthermore, high traveling speeds and the large weights of trains l
Externí odkaz:
https://doaj.org/article/7cd7266a6dd94f67ae736a8f828d01fa
Autor:
Florian Tschopp, Michael Riner, Marius Fehr, Lukas Bernreiter, Fadri Furrer, Tonci Novkovic, Andreas Pfrunder, Cesar Cadena, Roland Siegwart, Juan Nieto
Publikováno v:
Sensors, Vol 20, Iss 5, p 1439 (2020)
Robust and accurate pose estimation is crucial for many applications in mobile robotics. Extending visual Simultaneous Localization and Mapping (SLAM) with other modalities such as an inertial measurement unit (IMU) can boost robustness and accuracy.
Externí odkaz:
https://doaj.org/article/65195a790f0648f4bc9e8b69f7cdcf8f
Autor:
Pantic, Michael, Meijer, Isar, Bähnemann, Rik, Alatur, Nikhilesh, Andersson, Olov, Lerma, Cesar Cadena, Siegwart, Roland, Ott, Lionel
In this paper, we present a novel method for using Riemannian Motion Policies on volumetric maps, shown in the example of obstacle avoidance for Micro Aerial Vehicles (MAVs). While sampling or optimization-based planners are widely used for obstacle
Externí odkaz:
http://arxiv.org/abs/2301.08068
Autor:
Fadri Furrer, Tonci Novkovic, Marius Fehr, Margarita Grinvald, Cesar Cadena, Juan Nieto, Roland Siegwart
Publikováno v:
The International Journal of Robotics Research, 42 (3)
The capabilities of discovering new knowledge and updating the previously acquired one are crucial for deploying autonomous robots in unknown and changing environments. Spatial and objectness concepts are at the basis of several robotic functionaliti
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b9c989c91f82fb028fe7ca259e7d4a4b
https://hdl.handle.net/20.500.11850/623351
https://hdl.handle.net/20.500.11850/623351
Autor:
Andrei Cramariuc, Lukas Bernreiter, Florian Tschopp, Marius Fehr, Victor Reijgwart, Juan Nieto, Roland Siegwart, Cesar Cadena
Publikováno v:
IEEE Robotics and Automation Letters, 8 (2)
Integration of multiple sensor modalities and deep learning into Simultaneous Localization And Mapping (SLAM) systems are areas of significant interest in current research. Multi-modality is a stepping stone towards achieving robustness in challengin
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::58aec15ee2f5d2ca61c4f982ec14158c
https://hdl.handle.net/20.500.11850/593943
https://hdl.handle.net/20.500.11850/593943
Publikováno v:
Springer Proceedings in Advanced Robotics ISBN: 9783031255540
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::646d24aad8bb825c4118794048003d52
https://doi.org/10.1007/978-3-031-25555-7_9
https://doi.org/10.1007/978-3-031-25555-7_9
Publikováno v:
2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
Autor:
Marco Tranzatto, Mihir Kulkarni, Victor Reijgwart, Benoit Casseau, Timon Homberger, Paolo De Petris, Lionel Ott, Wayne Tubby, Gabriel Waibel, Huan Nguyen, Cesar Cadena, Mihir Dharmadhikari, Russell Buchanan, Lorenz Wellhausen, Nikhil Khedekar, Olov Andersson, Lintong Zhang, Takahiro Miki, Tung Dang, Matias Mattamala, Markus Montenegro, Konrad Meyer, Lukas Bernreiter, Xiangyu Wu, Adrien Briod, Mark Mueller, Maurice Fallon, Roland Siegwart, Marco Hutter, Kostas Alexis, Marco Camurri, Shehryar Khattak, Frank Mascarich, Patrick Pfreundschuh, David Wisth, Samuel Zimmermann
Publikováno v:
Web of Science
This article presents the CERBERUS robotic system-of-systems, which won the DARPA Subterranean Challenge Final Event in 2021. The Subterranean Challenge was organized by DARPA with the vision to facilitate the novel technologies necessary to reliably
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::66c702eb37fa951ae6621a93f0b98aba
http://arxiv.org/abs/2207.04914
http://arxiv.org/abs/2207.04914
Publikováno v:
2022 International Conference on Robotics and Automation (ICRA).
Autonomous robots deal with unexpected scenarios in real environments. Given input images, various visual perception tasks can be performed, e.g., semantic segmentation, depth estimation and normal estimation. These different tasks provide rich infor
This work presents an embodied agent that can adapt its semantic segmentation network to new indoor environments in a fully autonomous way. Because semantic segmentation networks fail to generalize well to unseen environments, the agent collects imag
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::896048013ddc43b15e8eb5d290a3b891
http://arxiv.org/abs/2203.00549
http://arxiv.org/abs/2203.00549