Zobrazeno 1 - 1
of 1
pro vyhledávání: '"Cerquera Calderón, Andrés Felipe"'
Publikováno v:
Universidad Autónoma de Occidente
Repositorio Institucional UAO
[1] R. Hudda, C. Kelly, G. Long, A. Pandit, D. Phillips, L. Sheet y I. Sidhu. (2013, mayo). “Self-Driving Cars,” College of Engineering University of California, Berkeley, CA, Estados Unidos. [En línea]. Disponible: https://ikhlaqsidhu.files.wordpress.com/ 2013/06/self_driving_cars.pdf [2] D. Xie, Y. Xu y R. Wang, “Obstacle detection and tracking method for autonomous vehicle based on three-dimensional LiDAR,” International Journal of Advanced Robotic Systems, Mar, 2019. doi: 10.1177/1729881419831587, [3] B. Browning, J. Deschaud, D. Prasser y P. Rander, “3D Mapping for high-fidelity unmanned ground vehicle lidar simulation,” The International Journal of Robotics Research, vol. 31, pp. 1349–1376, Nov, 2012. doi: 10.1177/0278364912460288 [4] C. Yee y J. Borenstein, “Characterization of a 2D Laser Scanner for Mobile Robot Obstacle Negotiation,” presentado en la 2002 IEEE International Conference on Robotics and Automation [En línea]. Disponible: https://ieeexplore.ieee.org/document/1013609 [5] H. Baltzakis, A. Argyros y P. Trahanias. “Fusion of laser and visual data for robot motion planning and collision avoidance,” Machine Vision and Applications, vol. 15, issue 2, pp, 92–100, dic. 2003. doi: 10.1007/s00138-003-0133-2 [6] K. Nagatani et al., "Multi-robot exploration for search and rescue missions: A report of map building in RoboCupRescue 2009," presentado en la 2009 IEEE International Workshop on Safety, Security & Rescue Robotics (SSRR), Denver, CO. doi: 10.1109/SSRR.2009.5424148 [7] L. Smadja, J. Ninot, y T. Gavrilovic, “Road extraction and environment interpretation from lidar sensors,” ISPRS. Arch., vol. 38, no. 3a, pp. 281–286, sep. 2010. [8] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid y J. Leonard. “Simultaneous Localization and Mapping: Present, Future, and the Robust-Perception Age,” IEEE Transactions on Robotics, vol. 32, issue 6, dic, 2016. doi: 10.1109/TRO.2016.2624754 [9] C. Goodin, M. Doude, C. Hudson y D. Carruth. “Enabling Off-Road Autonomous Navigation-Simulation of LIDAR in Dense Vegetation,” Electronics, vol. 7, no. 9, p. 154, ago, 2018. doi: 10.3390/electronics7090154 [10] Y. Broche, L. Herrera y E. Omar, “Bases neurales de la toma de decisiones,” Neurología, vol. 31, pp. 319-325, may, 2015. doi: 10.1016/j.nrl.2015.03.001 [11] L. Hofer. “Decision-making algorithms for autonomous robots,” Ph.D. disertación, École Doctorale de Mathématiques et D’Informatique, Université de Bordeaux, Bordeaux, Francia, 2017. Disponible en https://tel.archives-ouvertes.fr/tel-01684198 [12] I. Harner. (2017, Oct 23). “The 5 Autonomous Driving Levels Explained”. [Internet]. Disponible en https://iotforall.com/5-autonomous-driving-levels-explained [13] Waymo Industry (2009). “Our Mission”. [Internet]. Disponible en: https://waymo.com/mission [14] I. Bogoslavsky, O. Vysotska, J. Serafin, G. Grisetti y C. Stachniss, “Efficient traversability analysis for mobile robots using the Kinect sensor,” presentado en la 2013 European Conference on Mobile Robots, Barcelona, CA, doi: 10.1109/ECMR.2013.6698836 [15] G. Reina, A. Milella y R. Rouveure, “Traversability Analysis for Off-Road Vehicles using Stereo and Radar Data,” presentado en la 2015 IEEE International Conf. on Industrial Technology (ICIT), Sevilla, AND, doi: 10.1109/ICIT.2015.7125155 [16] X. Huang, C. Shuai y X. Wu, “Reactive navigation of autonomous vehicle,” Journal of Physics: Conf. Series, vol. 1176, pp. 52-79, mar, 2019. doi: 10.1088/1742-6596/1176/5/052079 [17] A. Souza, R. Maia, R. Aroca y L. Gonçalves, “Probabilistic robotic grid mapping based on occupancy and elevation information,” presentado en la 2013 16th International Conf. on Advanced Robotics, (ICAR), Montevideo, BA. doi: 10.1109/ICAR.2013.6766467 [18] A. Elfes, "Using occupancy grids for mobile robot perception and navigation," Computer, vol. 22, no. 6, pp. 46-57, jun, 1989. doi: 10.1109/2.30720 [19] Y. Liu, R. Emery, D. Chakrabarti, W. Burgard, y S. Thrun, “Using EM to learn 3D models with mobile robots,” en the International Conference on Machine Learning (ICML), San Francisco, 2001, pp. 329-336. [20] P. Pfaff, R. Triebel, y W. Burgard, “An efficient extension to elevation maps for outdoor terrain mapping and loop closing,” The International Journal of Robotics Research, vol. 26, no. 217, pp. 217–230, feb, 2007. doi: 10.1177/0278364906075165 [21] L. Berczi, I. Posner, y T. Barfoot, “Learning to Assess Terrain From Human Demonstration Using an Introspective Gaussian Process Classifier,” presentado en la 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA. doi: 10.1109/ICRA.2015.7139637 [22] S. Goldberg, W. Maimone, y L. Matthies, “Stereo Vision and Rover Navigation Software for Planetary Exploration,” Proceedings, IEEE Aerospace Conference, vol. 5, pp. 5-5, ene, 2002. doi: 10.1109/AERO.2002.1035370 [23] K. Ho, T. Peynot, y S. Sukkarieh, “Traversability Estimation for a Planetary Rover Via Experimental Kernel Learning in a Gaussian Process Framework,” presentado en la IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, BA, 2013. [24] P. Ross, A. English, D. Ball, B. Upcroft y P. Corke, “Finding the ground hidden in the grass: traversability estimation in vegetation,” Maestria, School of Electrical Engineering and Computer Science, Queensland University of Technology., Brisbane, Australia, 2015. Disponible en http://www.araa.asn.au/acra/acra2015/papers/pap105.pdf [25] J. Berrío, “Mapeo y Localización Simultánea de un robot móvil en ambientes estructurados basado en integración sensorial,” Maestria, Fac. Ingeniería., Universidad del Valle, Santiago de Cali, Valle del Cauca, Colombia. 2015. Disponible en http://hdl.handle.net/10893/8843 [26] J. Kocic, N. Jovičić y V. Drndarevic, “Sensors and Sensor Fusion in Autonomous Vehicles,” en 26th Telecommunications Forum (TELFOR), 2018, pp. 420-425. [27] J. Sock, J. Kim, J. Min y K. Kwak, "Probabilistic traversability map generation using 3D-LIDAR and camera," en IEEE International Conference on Robotics and Automation (ICRA), Stockholm, 2016, pp. 5631-5637. [28] N. Hirose, A. Sadeghian, F. Xia, R. Martin-Martin y S. Savarese, “VUNet: Dynamic Scene View Synthesis for Traversability Estimation using an RGB Camera,” IEEE Robotics and Automation Letters, vol. 4, issue 2, pp. 2062 – 2069, ene, 2019. doi: 10.1109/LRA.2019.2894869 [29] G. De Cubber, D. Doroftei, H. Sahli y Y. Baudoin, “Outdoor Terrain Traversability Analysis for Robot Navigation using a Time-Of-Flight Camera,” presentado en la RGB-D Workshop on 3D Perception in Robotics, Odense, DK, 2011. [30] NASA, (2003), “Rover Driving”. [Internet], Disponible en: https://www-robotics.jpl.nasa.gov/roboticVideos/vid1016-70-browse.jpg [31] ROSWIKI, (2019). “Turtlebot tango”. [Internet], Disponible en: http://ros.fei.edu.br/roswiki/attachments/rtabmap_ros(2f)Tutorials(2f)Tango(20)ROS(20)Streamer/turtlebot_tango.png [32] R. Chavez, J. Guzzi, L. Gambardella y A. Giusti, “Image Classification for Ground Traversability Estimation in Robotics,” en International Conference on Advanced Concepts for Intelligent Vision Systems(ICACI), 2017, pp. 325-336. [33] Jackal Unmanned Ground Vehicle (s.f). [Internet]. Disponible en https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/ [34] GEFORCE (s.f). [Internet]. Disponible en https://www.nvidia.com/es-la/geforce/ products/10series/geforce-gtx-1050/ [35] T. Giménez y M. Ros. “SISTEMA DE POSICIONAMIENTO GLOBAL (GPS),” Universidad de Murcia, Región de Murcia, Murcia, España, 2010. [En línea]. Disponible en: https://webs.um.es/bussons/GPSresumen_TamaraElena.pdf [36] BigComerse (s.f) “Thingmagic Xpress Sensor Hub Plug-In Gps Interface Module”. [Internet]. Disponible en https://cdn1.bigcommerce.com/n-ww20x/ka7ofex/products/1758/images/4254/GPS__23111.1434050193.1280.1280.jpg [37] A. Chaudhry, C. Shih, A. Skillin y D. Witcpalek, “Inertial Measurement Units,” University of Michigan., Ann Arbor, MI, Estados Unidos, nov, 12, 2018. [En línea]. Disponible en: https://www.eecs.umich.edu/courses/eecs373/Lec/StudentF18/ 373%20IMU%20Presentation.pdf [38] Clearpath robotics (s.f). “Puck lite”. [Internet]. Disponible en https://store.clearpathrobotics.com/products/puck-lite [39] StereoLabs (s.f). “ZED”. [Internet]. Disponible en https://www.stereolabs.com/zed/ [40] ROS (s.f). “What is Ros?”. [Internet]. Disponible en http://wiki.ros.org/ROS/Introduction [41] Baxter Research Robot (s.f). “Rviz-sdk-wiki”. [Internet]. Disponible en http://sdk.rethinkrobotics.com/wiki/Rviz [42] pcl (s.f). “What is PCL?”. [Internet]. Disponible en http://pointclouds.org/about/ [43] ROS (s.f). “nodelet”. [Internet]. Disponible en http://wiki.ros.org/nodelet [44] ROS (s.f). “pluginlib”. [En línea]. Disponible en http://wiki.ros.org/pluginlib [45] ROS (s.f). “costmap_2d”. [Internet]. Disponible en http://wiki.ros.org/costmap_2d [46] ROS (s.f). “navigation”. [Internet]. Disponible en: http://wiki.ros.org/navigation [47] ROS (s.f). “PointCloud to LaserScan”. [Internet]. Disponible en: http://wiki.ros.org/pointcloud_to_laserscan [48] H. Oleynikova, Z. Taylor, M. Fehr, J. Nieto y R. Siegwart, “Voxblox: Incremental 3D Euclidean Signed Distance Fields for On-Board MAV Planning,” en IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). [En línea], Disponible en https://arxiv.org/abs/1611.03631 [49] S. Macenski (s.f). “Spatio-Temporal Voxel Layer”. [Internet]. Disponible en https://github.com/SteveMacenski/spatio_temporal_voxel_layer [50] ClearPath Robotics (s.f). “NAVIGATING WITH JACKAL”. [Internet]. Disponible en http://www.clearpathrobotics.com/assets/guides/jackal/navigation.html [51] S. Macenski. (s.f), On Use of the Spatio-Temporal Voxel Layer: A Fresh(er) look at 3D Perception for the Planar World. Presentado en ROSCon 2018. [Internet]. Disponible en: https://roscon.ros.org/2018/presentations/ROSCon2018_SpatioTemporalVoxelLayer.pdf [52] N. Hirose, A. Sadeghian, F. Xia y S. Savarese, “GONet++: Traversability Estimation via Dynamic Scene View Synthesis,” IEEE Robotics & Automation Magazine, Jun, 2018. [En línea]. Disponible en https://www.researchgate.net/publication/325986451_GONet_Traversability_Estimation_via_Dynamic_Scene_View_Synthesis [53] N. Kaiser (2017). Nu_jackal_autonav. [Internet]. Disponible en https://github.com/njkaiser/nu_jackal_autonav [54] ROS (s.f). “gps_goal”. [En línea]. Disponible en http://wiki.ros.org/ gps_goal
Repositorio Institucional UAO
[1] R. Hudda, C. Kelly, G. Long, A. Pandit, D. Phillips, L. Sheet y I. Sidhu. (2013, mayo). “Self-Driving Cars,” College of Engineering University of California, Berkeley, CA, Estados Unidos. [En línea]. Disponible: https://ikhlaqsidhu.files.wordpress.com/ 2013/06/self_driving_cars.pdf [2] D. Xie, Y. Xu y R. Wang, “Obstacle detection and tracking method for autonomous vehicle based on three-dimensional LiDAR,” International Journal of Advanced Robotic Systems, Mar, 2019. doi: 10.1177/1729881419831587, [3] B. Browning, J. Deschaud, D. Prasser y P. Rander, “3D Mapping for high-fidelity unmanned ground vehicle lidar simulation,” The International Journal of Robotics Research, vol. 31, pp. 1349–1376, Nov, 2012. doi: 10.1177/0278364912460288 [4] C. Yee y J. Borenstein, “Characterization of a 2D Laser Scanner for Mobile Robot Obstacle Negotiation,” presentado en la 2002 IEEE International Conference on Robotics and Automation [En línea]. Disponible: https://ieeexplore.ieee.org/document/1013609 [5] H. Baltzakis, A. Argyros y P. Trahanias. “Fusion of laser and visual data for robot motion planning and collision avoidance,” Machine Vision and Applications, vol. 15, issue 2, pp, 92–100, dic. 2003. doi: 10.1007/s00138-003-0133-2 [6] K. Nagatani et al., "Multi-robot exploration for search and rescue missions: A report of map building in RoboCupRescue 2009," presentado en la 2009 IEEE International Workshop on Safety, Security & Rescue Robotics (SSRR), Denver, CO. doi: 10.1109/SSRR.2009.5424148 [7] L. Smadja, J. Ninot, y T. Gavrilovic, “Road extraction and environment interpretation from lidar sensors,” ISPRS. Arch., vol. 38, no. 3a, pp. 281–286, sep. 2010. [8] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid y J. Leonard. “Simultaneous Localization and Mapping: Present, Future, and the Robust-Perception Age,” IEEE Transactions on Robotics, vol. 32, issue 6, dic, 2016. doi: 10.1109/TRO.2016.2624754 [9] C. Goodin, M. Doude, C. Hudson y D. Carruth. “Enabling Off-Road Autonomous Navigation-Simulation of LIDAR in Dense Vegetation,” Electronics, vol. 7, no. 9, p. 154, ago, 2018. doi: 10.3390/electronics7090154 [10] Y. Broche, L. Herrera y E. Omar, “Bases neurales de la toma de decisiones,” Neurología, vol. 31, pp. 319-325, may, 2015. doi: 10.1016/j.nrl.2015.03.001 [11] L. Hofer. “Decision-making algorithms for autonomous robots,” Ph.D. disertación, École Doctorale de Mathématiques et D’Informatique, Université de Bordeaux, Bordeaux, Francia, 2017. Disponible en https://tel.archives-ouvertes.fr/tel-01684198 [12] I. Harner. (2017, Oct 23). “The 5 Autonomous Driving Levels Explained”. [Internet]. Disponible en https://iotforall.com/5-autonomous-driving-levels-explained [13] Waymo Industry (2009). “Our Mission”. [Internet]. Disponible en: https://waymo.com/mission [14] I. Bogoslavsky, O. Vysotska, J. Serafin, G. Grisetti y C. Stachniss, “Efficient traversability analysis for mobile robots using the Kinect sensor,” presentado en la 2013 European Conference on Mobile Robots, Barcelona, CA, doi: 10.1109/ECMR.2013.6698836 [15] G. Reina, A. Milella y R. Rouveure, “Traversability Analysis for Off-Road Vehicles using Stereo and Radar Data,” presentado en la 2015 IEEE International Conf. on Industrial Technology (ICIT), Sevilla, AND, doi: 10.1109/ICIT.2015.7125155 [16] X. Huang, C. Shuai y X. Wu, “Reactive navigation of autonomous vehicle,” Journal of Physics: Conf. Series, vol. 1176, pp. 52-79, mar, 2019. doi: 10.1088/1742-6596/1176/5/052079 [17] A. Souza, R. Maia, R. Aroca y L. Gonçalves, “Probabilistic robotic grid mapping based on occupancy and elevation information,” presentado en la 2013 16th International Conf. on Advanced Robotics, (ICAR), Montevideo, BA. doi: 10.1109/ICAR.2013.6766467 [18] A. Elfes, "Using occupancy grids for mobile robot perception and navigation," Computer, vol. 22, no. 6, pp. 46-57, jun, 1989. doi: 10.1109/2.30720 [19] Y. Liu, R. Emery, D. Chakrabarti, W. Burgard, y S. Thrun, “Using EM to learn 3D models with mobile robots,” en the International Conference on Machine Learning (ICML), San Francisco, 2001, pp. 329-336. [20] P. Pfaff, R. Triebel, y W. Burgard, “An efficient extension to elevation maps for outdoor terrain mapping and loop closing,” The International Journal of Robotics Research, vol. 26, no. 217, pp. 217–230, feb, 2007. doi: 10.1177/0278364906075165 [21] L. Berczi, I. Posner, y T. Barfoot, “Learning to Assess Terrain From Human Demonstration Using an Introspective Gaussian Process Classifier,” presentado en la 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA. doi: 10.1109/ICRA.2015.7139637 [22] S. Goldberg, W. Maimone, y L. Matthies, “Stereo Vision and Rover Navigation Software for Planetary Exploration,” Proceedings, IEEE Aerospace Conference, vol. 5, pp. 5-5, ene, 2002. doi: 10.1109/AERO.2002.1035370 [23] K. Ho, T. Peynot, y S. Sukkarieh, “Traversability Estimation for a Planetary Rover Via Experimental Kernel Learning in a Gaussian Process Framework,” presentado en la IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, BA, 2013. [24] P. Ross, A. English, D. Ball, B. Upcroft y P. Corke, “Finding the ground hidden in the grass: traversability estimation in vegetation,” Maestria, School of Electrical Engineering and Computer Science, Queensland University of Technology., Brisbane, Australia, 2015. Disponible en http://www.araa.asn.au/acra/acra2015/papers/pap105.pdf [25] J. Berrío, “Mapeo y Localización Simultánea de un robot móvil en ambientes estructurados basado en integración sensorial,” Maestria, Fac. Ingeniería., Universidad del Valle, Santiago de Cali, Valle del Cauca, Colombia. 2015. Disponible en http://hdl.handle.net/10893/8843 [26] J. Kocic, N. Jovičić y V. Drndarevic, “Sensors and Sensor Fusion in Autonomous Vehicles,” en 26th Telecommunications Forum (TELFOR), 2018, pp. 420-425. [27] J. Sock, J. Kim, J. Min y K. Kwak, "Probabilistic traversability map generation using 3D-LIDAR and camera," en IEEE International Conference on Robotics and Automation (ICRA), Stockholm, 2016, pp. 5631-5637. [28] N. Hirose, A. Sadeghian, F. Xia, R. Martin-Martin y S. Savarese, “VUNet: Dynamic Scene View Synthesis for Traversability Estimation using an RGB Camera,” IEEE Robotics and Automation Letters, vol. 4, issue 2, pp. 2062 – 2069, ene, 2019. doi: 10.1109/LRA.2019.2894869 [29] G. De Cubber, D. Doroftei, H. Sahli y Y. Baudoin, “Outdoor Terrain Traversability Analysis for Robot Navigation using a Time-Of-Flight Camera,” presentado en la RGB-D Workshop on 3D Perception in Robotics, Odense, DK, 2011. [30] NASA, (2003), “Rover Driving”. [Internet], Disponible en: https://www-robotics.jpl.nasa.gov/roboticVideos/vid1016-70-browse.jpg [31] ROSWIKI, (2019). “Turtlebot tango”. [Internet], Disponible en: http://ros.fei.edu.br/roswiki/attachments/rtabmap_ros(2f)Tutorials(2f)Tango(20)ROS(20)Streamer/turtlebot_tango.png [32] R. Chavez, J. Guzzi, L. Gambardella y A. Giusti, “Image Classification for Ground Traversability Estimation in Robotics,” en International Conference on Advanced Concepts for Intelligent Vision Systems(ICACI), 2017, pp. 325-336. [33] Jackal Unmanned Ground Vehicle (s.f). [Internet]. Disponible en https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/ [34] GEFORCE (s.f). [Internet]. Disponible en https://www.nvidia.com/es-la/geforce/ products/10series/geforce-gtx-1050/ [35] T. Giménez y M. Ros. “SISTEMA DE POSICIONAMIENTO GLOBAL (GPS),” Universidad de Murcia, Región de Murcia, Murcia, España, 2010. [En línea]. Disponible en: https://webs.um.es/bussons/GPSresumen_TamaraElena.pdf [36] BigComerse (s.f) “Thingmagic Xpress Sensor Hub Plug-In Gps Interface Module”. [Internet]. Disponible en https://cdn1.bigcommerce.com/n-ww20x/ka7ofex/products/1758/images/4254/GPS__23111.1434050193.1280.1280.jpg [37] A. Chaudhry, C. Shih, A. Skillin y D. Witcpalek, “Inertial Measurement Units,” University of Michigan., Ann Arbor, MI, Estados Unidos, nov, 12, 2018. [En línea]. Disponible en: https://www.eecs.umich.edu/courses/eecs373/Lec/StudentF18/ 373%20IMU%20Presentation.pdf [38] Clearpath robotics (s.f). “Puck lite”. [Internet]. Disponible en https://store.clearpathrobotics.com/products/puck-lite [39] StereoLabs (s.f). “ZED”. [Internet]. Disponible en https://www.stereolabs.com/zed/ [40] ROS (s.f). “What is Ros?”. [Internet]. Disponible en http://wiki.ros.org/ROS/Introduction [41] Baxter Research Robot (s.f). “Rviz-sdk-wiki”. [Internet]. Disponible en http://sdk.rethinkrobotics.com/wiki/Rviz [42] pcl (s.f). “What is PCL?”. [Internet]. Disponible en http://pointclouds.org/about/ [43] ROS (s.f). “nodelet”. [Internet]. Disponible en http://wiki.ros.org/nodelet [44] ROS (s.f). “pluginlib”. [En línea]. Disponible en http://wiki.ros.org/pluginlib [45] ROS (s.f). “costmap_2d”. [Internet]. Disponible en http://wiki.ros.org/costmap_2d [46] ROS (s.f). “navigation”. [Internet]. Disponible en: http://wiki.ros.org/navigation [47] ROS (s.f). “PointCloud to LaserScan”. [Internet]. Disponible en: http://wiki.ros.org/pointcloud_to_laserscan [48] H. Oleynikova, Z. Taylor, M. Fehr, J. Nieto y R. Siegwart, “Voxblox: Incremental 3D Euclidean Signed Distance Fields for On-Board MAV Planning,” en IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). [En línea], Disponible en https://arxiv.org/abs/1611.03631 [49] S. Macenski (s.f). “Spatio-Temporal Voxel Layer”. [Internet]. Disponible en https://github.com/SteveMacenski/spatio_temporal_voxel_layer [50] ClearPath Robotics (s.f). “NAVIGATING WITH JACKAL”. [Internet]. Disponible en http://www.clearpathrobotics.com/assets/guides/jackal/navigation.html [51] S. Macenski. (s.f), On Use of the Spatio-Temporal Voxel Layer: A Fresh(er) look at 3D Perception for the Planar World. Presentado en ROSCon 2018. [Internet]. Disponible en: https://roscon.ros.org/2018/presentations/ROSCon2018_SpatioTemporalVoxelLayer.pdf [52] N. Hirose, A. Sadeghian, F. Xia y S. Savarese, “GONet++: Traversability Estimation via Dynamic Scene View Synthesis,” IEEE Robotics & Automation Magazine, Jun, 2018. [En línea]. Disponible en https://www.researchgate.net/publication/325986451_GONet_Traversability_Estimation_via_Dynamic_Scene_View_Synthesis [53] N. Kaiser (2017). Nu_jackal_autonav. [Internet]. Disponible en https://github.com/njkaiser/nu_jackal_autonav [54] ROS (s.f). “gps_goal”. [En línea]. Disponible en http://wiki.ros.org/ gps_goal
Este documento presenta el desarrollo de un sistema de percepción robótica para estimación de transitabilidad en ambientes externos y no estructurados, así como su posterior implementación en el robot móvil terrestre Jackal. De igual manera, es
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od________25::c656b4ee4396401f6e14c7b3db47f842