Zobrazeno 1 - 10
of 47
pro vyhledávání: '"Cengiz Cinar"'
Autor:
R. Abo-Zeid, Cengiz Cinar
Publikováno v:
Boletim da Sociedade Paranaense de Matemática, Vol 31, Iss 1, Pp 43-49 (2013)
The aim of this work is to investigate the global stability, periodic nature, oscillation and the boundedness of all admissible solutions of the difference equation $x_{n+1}=\frac{Ax_{n-1}} {B-Cx_{n}x_{n-2}}$, n=0,1,2,... where A, B, C are positive r
Externí odkaz:
https://doaj.org/article/0052140f12164638873532355da09b4f
Publikováno v:
Volume: 3, Issue: 1 1-32
Eğitim Bilim ve Araştırma Dergisi
Eğitim Bilim ve Araştırma Dergisi
Bu çalışmanın amacı, eğitsel oyun kullanımı ile matematik öğretiminin 7.sınıf öğrencilerinin tam sayılarla işlemler konusundaki matematik dersine ilişkin tutumuna ve akademik başarısına etkisini incelemektir. Çalışmada, ön tes
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::31de0e0fd51738a096a074cfd9885138
https://dergipark.org.tr/tr/pub/ebad/issue/68980/982300
https://dergipark.org.tr/tr/pub/ebad/issue/68980/982300
Publikováno v:
Filomat. 33:1353-1359
In this paper, solution of the following difference equation is examined xn+1=xn-17/1+xn-5?xn-11, where the initial conditions are positive reel numbers.
Publikováno v:
Advances in Difference Equations, Vol 2010 (2010)
We prove that every positive solution of the max-type difference equation xn=max{A/xn-pα,B/xn-kβ}, n=0,1,2,… converges to x¯=max{A1/(1+α),B1/(1+β)} where p,k are positive integers, 0
Externí odkaz:
https://doaj.org/article/8081ba4d129446abae9f21a29420fd5f
Publikováno v:
Discrete Dynamics in Nature and Society, Vol 2010 (2010)
We investigate the periodic nature of the solution of the max-type difference equation 𝑥𝑛+1=max{𝑥𝑛,𝐴}/𝑥2𝑛𝑥𝑛−1, 𝑛=0,1,2,…, where the initial conditions are 𝑥−1=𝐴𝑟1 and 𝑥0=𝐴𝑟2 for 𝐴∈(0,∞), an
Externí odkaz:
https://doaj.org/article/31cec3ee52864aa5826d9bc0f2c894bb
Publikováno v:
Discrete Dynamics in Nature and Society, Vol 2009 (2009)
We study the behavior of the solutions of the following system of difference equations xn+1=max{A/xn,yn/xn}, yn+1=max{A/yn,xn/yn} where the constant A and the initial conditions are positive real numbers.
Externí odkaz:
https://doaj.org/article/778a8d1cf49c41c2967bcbbebe537364
Publikováno v:
Advances in Difference Equations, Vol 2008 (2008)
We investigate the periodic nature of solutions of a “max-type†difference equation sometimes referred to as the “Lyness max†equation. The equation we consider is  xn+1=max{xn,A}/xnâˆÂ
Externí odkaz:
https://doaj.org/article/eb251e64492e4ce2874d09b375254258
Publikováno v:
Discrete Dynamics in Nature and Society, Vol 2008 (2008)
We investigate the periodic nature of solutions of the max difference equation xn+1=max{xn,A}/(xnxn−1), n=0,1,…, where A is a positive real parameter, and the initial conditions x−1=Ar−1 and x0=Ar0 such that r−1 and r0 are positive ratio
Externí odkaz:
https://doaj.org/article/fa2ca7dad153495e998dbf8932bc889a
Publikováno v:
Mathematical and Computer Modelling. 54:1481-1485
In this paper, we investigate the global behavior of the difference equation x"n"+"1=@ax"n"-"1@b+@c@?k=1tx"n"-"2"k@?k=1tx"n"-"2"k,n=0,1,... where @b is a positive parameter and @a, @c are non-negative parameters, with non-negative initial conditions.
Publikováno v:
Mathematical and Computer Modelling. 53:1261-1267
In this paper, we investigate the positive solutions of the system of difference equations x"n"+"1=x"n"-"1y"nx"n"-"1+1,y"n"+"1=y"n"-"1x"ny"n"-"1+1, where y"0,y"-"1,x"0,x"-"[email protected]?[0,+~).