Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Cem Dede"'
Autor:
Kareem A. Wahid, Brennan Olson, Rishab Jain, Aaron J. Grossberg, Dina El-Habashy, Cem Dede, Vivian Salama, Moamen Abobakr, Abdallah S. R. Mohamed, Renjie He, Joel Jaskari, Jaakko Sahlsten, Kimmo Kaski, Clifton D. Fuller, Mohamed A. Naser
Publikováno v:
Scientific Data, Vol 9, Iss 1, Pp 1-6 (2022)
Measurement(s) skeletal muscle • adipose tissue Technology Type(s) computed tomography
Externí odkaz:
https://doaj.org/article/1f6c545f5d4442dcb0df6172c10eca09
Autor:
Kareem A. Wahid, Sara Ahmed, Renjie He, Lisanne V. van Dijk, Jonas Teuwen, Brigid A. McDonald, Vivian Salama, Abdallah S.R. Mohamed, Travis Salzillo, Cem Dede, Nicolette Taku, Stephen Y. Lai, Clifton D. Fuller, Mohamed A. Naser
Publikováno v:
Clinical and Translational Radiation Oncology, Vol 32, Iss , Pp 6-14 (2022)
Background/Purpose: Oropharyngeal cancer (OPC) primary gross tumor volume (GTVp) segmentation is crucial for radiotherapy. Multiparametric MRI (mpMRI) is increasingly used for OPC adaptive radiotherapy but relies on manual segmentation. Therefore, we
Externí odkaz:
https://doaj.org/article/ddd64c41230343b4b61f9c1202cfe2cf
Autor:
Mohamed A. Naser, Kareem A. Wahid, Aaron J. Grossberg, Brennan Olson, Rishab Jain, Dina El-Habashy, Cem Dede, Vivian Salama, Moamen Abobakr, Abdallah S. R. Mohamed, Renjie He, Joel Jaskari, Jaakko Sahlsten, Kimmo Kaski, Clifton D. Fuller
Publikováno v:
Frontiers in Oncology, Vol 12 (2022)
Background/PurposeSarcopenia is a prognostic factor in patients with head and neck cancer (HNC). Sarcopenia can be determined using the skeletal muscle index (SMI) calculated from cervical neck skeletal muscle (SM) segmentations. However, SM segmenta
Externí odkaz:
https://doaj.org/article/7cf49e7de1814fe293faa325bea8d53f
Autor:
Seyedmohammadhossein Hosseinian, Mehdi Hemmati, Cem Dede, Travis C. Salzillo, Lisanne V. van Dijk, Abdallah S. R. Mohamed, Stephen Y. Lai, Andrew J. Schaefer, Clifton D. Fuller
Publikováno v:
medRxiv
PurposeGiven the limitations of extant models for normal tissue complication probability estimation for osteoradionecrosis (ORN) of the mandible, the purpose of this study was to enrich statistical inference by exploiting structural properties of dat
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8f8a490aaf6206fd4922ed7ef5d5efe4
https://doi.org/10.1101/2023.03.24.23287710
https://doi.org/10.1101/2023.03.24.23287710
Autor:
Jarey H. Wang, Lance McCoy, Vivian Salama, Temitayo Ajayi, Cem Dede, Amy Moreno, Abdallah S.R. Mohamed, Katherine A. Hutcheson, Clifton David Fuller, Lisanne V. van Dijk
Publikováno v:
Radiotherapy and Oncology, 180:109465. ELSEVIER IRELAND LTD
BackgroundPost-treatment symptoms are a focal point of follow-up visits for head and neck cancer patients. While symptoms such as dysphagia and shortness-of-breath early after treatment may motivate additional work up, their precise association with
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0dfd634d2a156e3efa8f2abf872da611
https://research.rug.nl/en/publications/0b0df5f5-83b9-45bf-8780-b2eb4af832b1
https://research.rug.nl/en/publications/0b0df5f5-83b9-45bf-8780-b2eb4af832b1
Autor:
Mohamed A. Naser, Kareem A. Wahid, Sara Ahmed, Vivian Salama, Cem Dede, Benjamin W. Edwards, Ruitao Lin, Brigid McDonald, Travis C. Salzillo, Renjie He, Yao Ding, Moamen Abobakr Abdelaal, Daniel Thill, Nicolette O'Connell, Virgil Willcut, John P. Christodouleas, Stephen Y. Lai, Clifton D. Fuller, Abdallah S. R. Mohamed
Publikováno v:
Medical physicsREFERENCES.
Adequate image registration of anatomical and functional magnetic resonance imaging (MRI) scans is necessary for MR-guided head and neck cancer (HNC) adaptive radiotherapy planning. Despite the quantitative capabilities of diffusion-weighted imaging
Autor:
Mohamed Naser, Vivian Salama, Keith Sanders, Kareem Wahid, Brigid McDonald, Cem Dede, Setareh Sharafi
PurposeParotid whole-gland magnetic resonance (MR) T1 intensity, thresholded at the 90th percentile (T1 P90), has been previously reported to be a candidate MR imaging biomarker (MR-IBM) for improved prediction of xerostomia development after radioth
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b100ac4216f7e45aad675fa0a3d1c094
https://doi.org/10.1101/2022.07.11.22277439
https://doi.org/10.1101/2022.07.11.22277439
Autor:
Mohamed Naser, Moamen Abobakr Abdelaal, Renjie He, Kareem Wahid, Lisanne Van Dijk, Clifton Fuller, Cem Dede, Abdallah Mohamed
Publikováno v:
Head Neck Tumor Segm Chall (2021)
Lecture Notes in Computer Science ISBN: 9783030982522
Lecture Notes in Computer Science ISBN: 9783030982522
Auto-segmentation of primary tumors in oropharyngeal cancer using PET/CT images is an unmet need that has the potential to improve radiation oncology workflows. In this study, we develop a series of deep learning models based on a 3D Residual Unet (R
Autor:
Kareem A. Wahid, Brennan Olson, Rishab Jain, Aaron J. Grossberg, Dina El-Habashy, Cem Dede, Vivian Salama, Moamen Abobakr, Abdallah S.R. Mohamed, Renjie He, Joel Jaskari, Jaakko Sahlsten, Kimmo Kaski, Clifton D. Fuller, Mohamed A. Naser
The accurate determination of sarcopenia is critical for disease management in patients with head and neck cancer (HNC). Quantitative determination of sarcopenia is currently dependent on manually-generated segmentations of skeletal muscle derived fr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::7e7af3eefedc51e212e1f6751d06e2fc
https://doi.org/10.1101/2022.01.23.22269674
https://doi.org/10.1101/2022.01.23.22269674
Autor:
Clifton D. Fuller, Cem Dede, Kareem Wahid, Abdallah S.R. Mohamed, Renjie He, Lisanne V. van Dijk, Moamen Abobakr Abdelaal, Mohamed A. Naser
Publikováno v:
Head and neck tumor segmentation and outcome prediction : second challenge, HECKTOR 2021, held in conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings. Head and Neck Tumor Segmentation Challenge (2nd : 2021 ..., 13209, 300-307
PET/CT images provide a rich data source for clinical prediction models in head and neck squamous cell carcinoma (HNSCC). Deep learning models often use images in an end-to-end fashion with clinical data or no additional input for predictions. Howeve
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ec57257cb954018164db78c65246fd63
https://research.rug.nl/en/publications/152a457d-1f91-41ae-9f30-64f620e7ecd5
https://research.rug.nl/en/publications/152a457d-1f91-41ae-9f30-64f620e7ecd5