Zobrazeno 1 - 10
of 163
pro vyhledávání: '"Cazenave, Thierry"'
We consider the Schr\"odinger equation with nonlinear dissipation \begin{equation*} i \partial _t u +\Delta u=\lambda|u|^{\alpha}u \end{equation*} in ${\mathbb R}^N $, $N\geq1$, where $\lambda\in {\mathbb C} $ with $\Im\lambda<0$. Assuming $\frac {2}
Externí odkaz:
http://arxiv.org/abs/2007.13697
We study the existence of sign-changing solutions to the nonlinear heat equation $\partial _t u = \Delta u + |u|^\alpha u$ on ${\mathbb R}^N $, $N\ge 3$, with $\frac {2} {N-2} < \alpha <\alpha _0$, where $\alpha _0=\frac {4} {N-4+2\sqrt{ N-1 } }\in (
Externí odkaz:
http://arxiv.org/abs/2006.15944
Autor:
Cazenave, Thierry, Naumkin, Ivan
Given any $\mu_1, \mu_2\in {\mathbb C}$ and $\alpha >0$, we prove the local existence of arbitrarily smooth solutions of the nonlinear Klein-Gordon equation $\partial_{ tt } u - \Delta u + \mu_1 u = \mu_2 |u|^\alpha u$ on ${\mathbb R}^N$, $N\ge 1$, t
Externí odkaz:
http://arxiv.org/abs/1907.13048
Autor:
Cazenave, Thierry, Han, Zheng
We study the time-asymptotic behavior of solutions of the Schr\"odinger equation with nonlinear dissipation \begin{equation*} \partial _t u = i \Delta u + \lambda |u|^\alpha u \end{equation*} in ${\mathbb R}^N $, $N\geq1$, where $\lambda\in {\mathbb
Externí odkaz:
http://arxiv.org/abs/1906.11067
We consider the nonlinear Schr\"odinger equation on ${\mathbb R}^N $, $N\ge 1$, \begin{equation*} \partial _t u = i \Delta u + \lambda | u |^\alpha u \quad \mbox{on ${\mathbb R}^N $, $\alpha>0$,} \end{equation*} with $\lambda \in {\mathbb C}$ and $\R
Externí odkaz:
http://arxiv.org/abs/1906.02983
We prove that any sufficiently differentiable space-like hypersurface of ${\mathbb R}^{1+N} $ coincides locally around any of its points with the blow-up surface of a finite-energy solution of the focusing nonlinear wave equation $\partial_{tt} u - \
Externí odkaz:
http://arxiv.org/abs/1904.03893
We consider the focusing energy subcritical nonlinear wave equation $\partial_{tt} u - \Delta u= |u|^{p-1} u$ in ${\mathbb R}^N$, $N\ge 1$. Given any compact set $ E \subset {\mathbb R}^N $, we construct finite energy solutions which blow up at $t=0$
Externí odkaz:
http://arxiv.org/abs/1812.03949
We consider the nonlinear Schr\"odinger equation \[ u_t = i \Delta u + | u |^\alpha u \quad \mbox{on ${\mathbb R}^N $, $\alpha>0$,} \] for $H^1$-subcritical or critical nonlinearities: $(N-2) \alpha \le 4$. Under the additional technical assumptions
Externí odkaz:
http://arxiv.org/abs/1805.06415
We consider the nonlinear heat equation $u_t = \Delta u + |u|^\alpha u$ with $\alpha >0$, either on ${\mathbb R}^N $, $N\ge 1$, or on a bounded domain with Dirichlet boundary conditions. We prove that in the Sobolev subcritical case $(N-2) \alpha <4$
Externí odkaz:
http://arxiv.org/abs/1805.04466