Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Cavalcante, W. V."'
We study extension theorems for Lipschitz-type operators acting on metric spaces and with values on spaces of integrable functions. Pointwise domination is not a natural feature of such spaces, and so almost everywhere inequalities and other measure-
Externí odkaz:
http://arxiv.org/abs/1910.00243
The optimal constants of the $m$-linear Bohnenblust-Hille and Hardy-Littlewood inequalities are still not known despite its importance in several fields of Mathematics. For the Bohnenblust-Hille inequality and real scalars it is well-known that the o
Externí odkaz:
http://arxiv.org/abs/1705.06307
We develop a constructive process which determines all extreme points of the unit ball of the space of $m$--linear forms, $m\geq1.$ Our method provides a full characterization of the geometry of that space through finitely many elementary steps, and
Externí odkaz:
http://arxiv.org/abs/1612.08397
Autor:
Albuquerque, N., Araujo, G., Cavalcante, W. V., Nogueira, T., Nunez-Alarcon, D., Pellegrino, D., Rueda, P.
Publikováno v:
Ann. Funct. Anal. 9, no. 4 (2018), 574-590
This paper has two clear motivations: a technical and a practical. The technical motivation unifies in a single and crystal clear formulation a huge family of inequalities that have been produced separately in the last 90 years in different contexts.
Externí odkaz:
http://arxiv.org/abs/1409.6769
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.