Zobrazeno 1 - 10
of 29
pro vyhledávání: '"Cavalar, Bruno"'
We prove the first meta-complexity characterization of a quantum cryptographic primitive. We show that one-way puzzles exist if and only if there is some quantum samplable distribution of binary strings over which it is hard to approximate Kolmogorov
Externí odkaz:
http://arxiv.org/abs/2410.04984
There is a large body of work studying what forms of computational hardness are needed to realize classical cryptography. In particular, one-way functions and pseudorandom generators can be built from each other, and thus require equivalent computati
Externí odkaz:
http://arxiv.org/abs/2312.08363
Autor:
Cavalar, Bruno P., Oliveira, Igor C.
We establish new separations between the power of monotone and general (non-monotone) Boolean circuits: - For every $k \geq 1$, there is a monotone function in ${\sf AC^0}$ that requires monotone circuits of depth $\Omega(\log^k n)$. This significant
Externí odkaz:
http://arxiv.org/abs/2305.06821
Autor:
Barros, Gabriel Ferreira, Cavalar, Bruno Pasqualotto, Kohayakawa, Yoshiharu, Mota, Guilherme Oliveira, Naia, Tássio
We investigate the threshold $p_{\vec H}=p_{\vec H}(n)$ for the Ramsey-type property $G(n,p)\to \vec H$, where $G(n,p)$ is the binomial random graph and $G\to\vec H$ indicates that every orientation of the graph $G$ contains the oriented graph $\vec
Externí odkaz:
http://arxiv.org/abs/2211.07033
Autor:
Cavalar, Bruno P., Lu, Zhenjian
Comparator circuits are a natural circuit model for studying bounded fan-out computation whose power sits between nondeterministic branching programs and general circuits. Despite having been studied for nearly three decades, the first superlinear lo
Externí odkaz:
http://arxiv.org/abs/2111.14974
If $G$ is a graph and $\vec H$ is an oriented graph, we write $G\to \vec H$ to say that every orientation of the edges of $G$ contains $\vec H$ as a subdigraph. We consider the case in which $G=G(n,p)$, the binomial random graph. We determine the thr
Externí odkaz:
http://arxiv.org/abs/2012.08632
Robust sunflowers are a generalization of combinatorial sunflowers that have applications in monotone circuit complexity, DNF sparsification, randomness extractors, and recent advances on the Erd\H{o}s-Rado sunflower conjecture. The recent breakthrou
Externí odkaz:
http://arxiv.org/abs/2012.03883
Autor:
Barros, Gabriel Ferreira, Cavalar, Bruno Pasqualotto, Mota, Guilherme Oliveira, Parczyk, Olaf
For graphs $G$ and $H$, let $G \overset{\mathrm{rb}}{{\longrightarrow}} H$ denote the property that for every proper edge colouring of $G$ there is a rainbow copy of $H$ in $G$. Extending a result of Nenadov, Person, \v{S}kori\'{c} and Steger [J. Com
Externí odkaz:
http://arxiv.org/abs/2006.02079
Autor:
Cavalar, Bruno Pasqualotto
Given an acyclic oriented graph $\vec{H}$ and a graph $G$, we write $G \to \vec{H}$ if every orientation of $G$ has an oriented copy of $\vec{H}$. We define $\vec{R}(\vec{H})$ as the smallest number $n$ such that there exists a graph $G$ satisfying $
Externí odkaz:
http://arxiv.org/abs/1903.02099
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.