Zobrazeno 1 - 10
of 26
pro vyhledávání: '"Caullery, Florian"'
Publikováno v:
Cryptography and Communications--Discrete Structures, Boolean Functions, and Sequences, 2024, Volume 16 (2)
The autocorrelation of a sequence is a useful criterion, among all, of resistance to cryptographic attacks. The behavior of the autocorrelations of random Boolean functions (studied by Florian Caullery, Eric F\'erard and Fran\c{c}ois Rodier [4]) show
Externí odkaz:
http://arxiv.org/abs/2410.11347
It is notably challenging to design an efficient and secure signature scheme based on error-correcting codes. An approach to build such signature schemes is to derive it from an identification protocol through the Fiat-Shamir transform. All such prot
Externí odkaz:
http://arxiv.org/abs/1903.10212
Autor:
Caullery, Florian, Rodier, François
The absolute indicator is one of the measures used to determine the resistance offered by a Boolean function when used in the design of a symmetric cryptosystem. It was proposed along with the sum of square indicator to evaluate the quality of the di
Externí odkaz:
http://arxiv.org/abs/1801.03337
Autor:
Caullery, Florian
Les fonctions de F_q dans lui-même sont des objets étudiés dans de divers domaines tels que la cryptographie, la théorie des codes correcteurs d'erreurs, la géométrie finie ainsi que la géométrie algébrique. Il est bien connu que ces fonctio
Externí odkaz:
http://www.theses.fr/2014AIXM4013/document
Planar functions are special functions from a finite field to itself that give rise to finite projective planes and other combinatorial objects. We consider polynomials over a finite field $K$ that induce planar functions on infinitely many extension
Externí odkaz:
http://arxiv.org/abs/1403.4015
Autor:
Caullery, Florian, Schmidt, Kai-Uwe
A hyperoval in the projective plane $\mathbb{P}^2(\mathbb{F}_q)$ is a set of $q+2$ points no three of which are collinear. Hyperovals have been studied extensively since the 1950s with the ultimate goal of establishing a complete classification. It i
Externí odkaz:
http://arxiv.org/abs/1403.2880
Autor:
Caullery, Florian
In this paper, we show that there is no vectorial Boolean function of degree 4e, with e satisfaying certain conditions, which is APN over infinitely many extensions of its field of definition. It is a new step in the proof of the conjecture of Aubry,
Externí odkaz:
http://arxiv.org/abs/1309.7776
Autor:
Caullery, Florian
We give all the polynomials functions of degree 20 which are APN over an infinity of field extensions and show they are all CCZ-equivalent to the function $x^5$, which is a new step in proving the conjecture of Aubry, McGuire and Rodier.
Comment
Comment
Externí odkaz:
http://arxiv.org/abs/1212.4638
Publikováno v:
Cryptography & Communications; Mar2024, Vol. 16 Issue 2, p445-458, 14p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.