Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Cathleen, Huang"'
Autor:
Robert J. H. Miller, Aditya Killekar, Aakash Shanbhag, Bryan Bednarski, Anna M. Michalowska, Terrence D. Ruddy, Andrew J. Einstein, David E. Newby, Mark Lemley, Konrad Pieszko, Serge D. Van Kriekinge, Paul B. Kavanagh, Joanna X. Liang, Cathleen Huang, Damini Dey, Daniel S. Berman, Piotr J. Slomka
Publikováno v:
Nature Communications, Vol 15, Iss 1, Pp 1-10 (2024)
Abstract Chest computed tomography is one of the most common diagnostic tests, with 15 million scans performed annually in the United States. Coronary calcium can be visualized on these scans, but other measures of cardiac risk such as atrial and ven
Externí odkaz:
https://doaj.org/article/4c588a8fbc88488b95dfaa67b3daf6af
Autor:
Robert J.H. Miller, Bryan P. Bednarski, Konrad Pieszko, Jacek Kwiecinski, Michelle C. Williams, Aakash Shanbhag, Joanna X. Liang, Cathleen Huang, Tali Sharir, M. Timothy Hauser, Sharmila Dorbala, Marcelo F. Di Carli, Mathews B. Fish, Terrence D. Ruddy, Timothy M. Bateman, Andrew J. Einstein, Philipp A. Kaufmann, Edward J. Miller, Albert J. Sinusas, Wanda Acampa, Donghee Han, Damini Dey, Daniel S. Berman, Piotr J. Slomka
Publikováno v:
EBioMedicine, Vol 99, Iss , Pp 104930- (2024)
Summary: Background: Myocardial perfusion imaging (MPI) is one of the most common cardiac scans and is used for diagnosis of coronary artery disease and assessment of cardiovascular risk. However, the large majority of MPI patients have normal result
Externí odkaz:
https://doaj.org/article/1ebd9b1ba5254425a0a74eefbe0cbb75
Autor:
Ananya Singh, Robert J.H. Miller, Yuka Otaki, Paul Kavanagh, Michael T. Hauser, Evangelos Tzolos, Jacek Kwiecinski, Serge Van Kriekinge, Chih-Chun Wei, Tali Sharir, Andrew J. Einstein, Mathews B. Fish, Terrence D. Ruddy, Philipp A. Kaufmann, Albert J. Sinusas, Edward J. Miller, Timothy M. Bateman, Sharmila Dorbala, Marcelo Di Carli, Joanna X. Liang, Cathleen Huang, Donghee Han, Damini Dey, Daniel S. Berman, Piotr J. Slomka
Publikováno v:
JACC: Cardiovascular Imaging. 16:209-220
Myocardial perfusion imaging (MPI) is frequently used to provide risk stratification, but methods to improve the accuracy of these predictions are needed.We developed an explainable deep learning (DL) model (HARD MACE [major adverse cardiac events]-D
Autor:
Attila Feher, Konrad Pieszko, Robert Miller, Mark Lemley, Aakash Shanbhag, Cathleen Huang, Leonidas Miras, Yi-Hwa Liu, Albert J. Sinusas, Edward J. Miller, Piotr J. Slomka
Publikováno v:
Journal of Nuclear Cardiology. 30:860-863
Autor:
Robert Jh, Miller, Konrad, Pieszko, Aakash, Shanbhag, Attila, Feher, Mark, Lemley, Aditya, Killekar, Paul B, Kavanagh, Serge D, Van Kriekinge, Joanna X, Liang, Cathleen, Huang, Edward J, Miller, Timothy, Bateman, Daniel S, Berman, Damini, Dey, Piotr J, Slomka
Publikováno v:
Journal of Nuclear Medicine. 64:652-658
Autor:
Aakash D. Shanbhag, Robert J.H. Miller, Konrad Pieszko, Mark Lemley, Paul Kavanagh, Attila Feher, Edward J. Miller, Albert J. Sinusas, Philipp A. Kaufmann, Donghee Han, Cathleen Huang, Joanna X. Liang, Daniel S. Berman, Damini Dey, Piotr J. Slomka
Publikováno v:
Journal of Nuclear Medicine. 64:472-478
Autor:
Robert J. H. Miller, M. Timothy Hauser, Tali Sharir, Andrew J. Einstein, Mathews B. Fish, Terrence D. Ruddy, Philipp A. Kaufmann, Albert J. Sinusas, Edward J. Miller, Timothy M. Bateman, Sharmila Dorbala, Marcelo Di Carli, Cathleen Huang, Joanna X. Liang, Donghee Han, Damini Dey, Daniel S. Berman, Piotr J. Slomka
Publikováno v:
J Nucl Cardiol
BACKGROUND: Accurately predicting which patients will have abnormal perfusion on MPI based on pre-test clinical information may help physicians make test selection decisions. We developed and validated a machine learning (ML) model for predicting abn
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3d2f42cd6d791623144b4008c4e05777
https://europepmc.org/articles/PMC9588501/
https://europepmc.org/articles/PMC9588501/
Autor:
Attila Feher, Konrad Pieszko, Robert Miller, Mark Lemley, Aakash Shanbhag, Cathleen Huang, Leonidas Miras, Yi-Hwa Liu, Albert J. Sinusas, Edward J. Miller, Piotr J. Slomka
Publikováno v:
Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology.
Machine learning (ML) has been previously applied for prognostication in patients undergoing SPECT myocardial perfusion imaging (MPI). We evaluated whether including attenuation CT coronary artery calcification (CAC) scoring improves ML prediction of
Publikováno v:
Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology. 29(4)
Artificial intelligence (AI) techniques have emerged as a highly efficient approach to accurately and rapidly interpret diagnostic imaging and may play a vital role in nuclear cardiology. In nuclear cardiology, there are many clinical, stress, and im
Publikováno v:
Journal of Vascular Surgery. 74:e325-e326