Zobrazeno 1 - 10
of 90
pro vyhledávání: '"Catherine Sulem"'
Publikováno v:
Fluids, Vol 6, Iss 3, p 103 (2021)
An overview of a Hamiltonian framework for the description of nonlinear modulation of surface water waves is presented. The main result is the derivation of a Hamiltonian version of Dysthe’s equation for two-dimensional gravity waves on deep water.
Externí odkaz:
https://doaj.org/article/96d96c21d33b4ed2ab1e9c1e6a85d82e
Publikováno v:
Revista de la Unión Matemática Argentina. :281-308
Publikováno v:
Multiscale Modeling & Simulation. 20:349-378
Publikováno v:
Water Waves. 3:1-4
This paper is a study of the water wave problem in a two-dimensional domain of infinite depth in the presence of non-zero constant vorticity. A goal is to describe the effects of uniform shear flow on the modulation of weakly nonlinear quasi-monochro
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1b477860319915f00bcd53544df5e5fd
http://arxiv.org/abs/2204.13506
http://arxiv.org/abs/2204.13506
Publikováno v:
Water Waves. 3:127-152
A new Hamiltonian version of Dysthe’s equation is derived for two-dimensional weakly modulated gravity waves on deep water. A key ingredient in this derivation is a Birkhoff normal form transformation that eliminates all non-resonant cubic terms an
Publikováno v:
Quarterly of Applied Mathematics. 78:33-73
Publikováno v:
Fluids, Vol 6, Iss 103, p 103 (2021)
Fluids
Volume 6
Issue 3
Fluids
Volume 6
Issue 3
An overview of a Hamiltonian framework for the description of nonlinear modulation of surface water waves is presented. The main result is the derivation of a Hamiltonian version of Dysthe’s equation for two-dimensional gravity waves on deep water.
Publikováno v:
Advances in Mathematical Fluid Mechanics ISBN: 9783030678449
About 70% of the Earth’s surface is covered by water and about 40% of the world’s population lives within 100 km of the coast and estuaries. It is thus not surprising that ocean waves, directly or indirectly, affect human activities and have been
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::4b38e608bb6ffada3a645ed1aa4ffc71
https://doi.org/10.1007/978-3-030-67845-6_4
https://doi.org/10.1007/978-3-030-67845-6_4
Publikováno v:
Anal. PDE 13, no. 5 (2020), 1539-1578
We show that the derivative nonlinear Schr\"odinger (DNLS) equation is globally well-posed in the weighted Sobolev space $H^{2,2}(\mathbb{R})$. Our result exploits the complete integrability of DNLS and removes certain spectral conditions on the init
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8aeb7ceb94d56fe1e6fba155206a48ca
https://projecteuclid.org/euclid.apde/1600308062
https://projecteuclid.org/euclid.apde/1600308062