Zobrazeno 1 - 10
of 152
pro vyhledávání: '"Castro, Sofía"'
Heteroclinic cycles are sequences of equilibria along with trajectories that connect them in a cyclic manner. We investigate a class of robust heteroclinic cycles that does not satisfy the usual condition that all connections between equilibria lie i
Externí odkaz:
http://arxiv.org/abs/2412.12805
This is a complete study of the dynamics of polynomial planar vector fields whose linear part is a multiple of the identity and whose nonlinear part is a contracting homogeneous polynomial. The contracting nonlinearity provides the existence of an in
Externí odkaz:
http://arxiv.org/abs/2307.16020
The Jungle Game is used in population dynamics to describe cyclic competition among species that interact via a food chain. The dynamics of the Jungle Game supports a heteroclinic network whose cycles represent coexisting species. The stability of al
Externí odkaz:
http://arxiv.org/abs/2306.09880
Autor:
Castro, Sofia B. S. D.
We provide a novel approach to achieving a desired outcome in a coordination game: the original 2x2 game is embedded in a 2x3 game where one of the players may use a third action. For a large set of payoff values only one of the Nash equilibria of th
Externí odkaz:
http://arxiv.org/abs/2304.05763
We consider heteroclinic networks between $n \in \mathbb{N}$ nodes where the only connections are those linking each node to its two subsequent neighbouring ones. Using a construction method where all nodes are placed in a single one-dimensional spac
Externí odkaz:
http://arxiv.org/abs/2303.17922
Autor:
Valentin, Alvin Patrick M. ⁎, Bonifacio, Phoemela Bianca S.D., Castro, Sofia Isabel Corinne O., Ruiz, Jerica Charity A., Sy, Talisha Isabella L., Trinidad, Elmer Lewis O.
Publikováno v:
In Cleaner Waste Systems December 2024 9
We study a system of ordinary differential equations in R5 that is used as a model both in population dynamics and in game theory, and is known to exhibit a heteroclinic network consisting in the union of four types of elementary heteroclinic cycles.
Externí odkaz:
http://arxiv.org/abs/2107.09383
This is a complete study of the dynamics of polynomial planar vector fields whose linear part is a multiple of the identity and whose nonlinear part is a homogeneous polynomial. It extends previous work by other authors that was mainly concerned with
Externí odkaz:
http://arxiv.org/abs/2106.07516
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We provide conditions guaranteeing that certain classes of robust heteroclinic networks are asymptotically stable. We study the asymptotic stability of ac-networks --- robust heteroclinic networks that exist in smooth ${\mathbb Z}^n_2$-equivariant dy
Externí odkaz:
http://arxiv.org/abs/1905.06419