Zobrazeno 1 - 10
of 82
pro vyhledávání: '"Castello, B."'
Motivated by the growing use of Artificial Intelligence (AI) tools in control design, this paper takes the first steps towards bridging the gap between results from Direct Gradient methods for the Linear Quadratic Regulator (LQR), and neural networks
Externí odkaz:
http://arxiv.org/abs/2408.15456
Recent research in neural networks and machine learning suggests that using many more parameters than strictly required by the initial complexity of a regression problem can result in more accurate or faster-converging models -- contrary to classical
Externí odkaz:
http://arxiv.org/abs/2305.09904
We develop some basic principles for the design and robustness analysis of a continuous-time bilinear dynamical network, where an attacker can manipulate the strength of the interconnections/edges between some of the agents/nodes. We formulate the ed
Externí odkaz:
http://arxiv.org/abs/2009.03884
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
IEEE Transactions on Automatic Control. :1-8
Publikováno v:
2022 IEEE 61st Conference on Decision and Control (CDC).
Publikováno v:
2021 60th IEEE Conference on Decision and Control (CDC).
Autor:
Padulles Castello, B., Carrasco, R., Roldan, F.L., Ingelmo, M., Figueras, M., Mercader, C., Carrascal, A., Muní, M., Mengual, L., Izquierdo, L., Alcaraz, A.
Publikováno v:
In European Urology March 2024 85 Supplement 1:S1666-S1666
Publikováno v:
In Sleep Medicine February 2024 115 Supplement 1:236-236
Publikováno v:
In Sleep Medicine February 2024 115 Supplement 1:35-35