Zobrazeno 1 - 10
of 153
pro vyhledávání: '"Cassano, Francesco"'
We discuss Q-absolutely continuous functions between Carnot groups, following Maly's definition for maps of several variables. Such maps enjoy nice regularity properties, like continuity, Pansu differentiability a.e., weak differentiability and an Ar
Externí odkaz:
http://arxiv.org/abs/2405.05024
We show that vector fields $b$ whose spatial derivative $D_xb$ satisfies a Orlicz summability condition have a spatially continuous representative and are well-posed. For the case of sub-exponential summability, their flows satisfy a Lusin (N) condit
Externí odkaz:
http://arxiv.org/abs/2208.01381
We discuss Meyers-Serrin's type results for smooth approximations of functions $b=b(t,x):\mathbb{R}\times\mathbb{R}^n\to\mathbb{R}^m$, with convergence of an energy of the form \[ \int_{\mathbb{R}}\int_{\mathbb{R}^n} w(t,x) \varphi\left(|Db(t,x)|\rig
Externí odkaz:
http://arxiv.org/abs/2203.03306
Publikováno v:
SIAM J. Math. Anal. 54 (2022), no. 6, 5761-5791
Given a family of locally Lipschitz vector fields $X(x)=(X_1(x),\dots,X_m(x))$ on $\mathbb{R}^n$, $m\leq n$, we study integral functionals depending on $X$. Using the results in \cite{MPSC1}, we study the convergence of minima, minimizers and momenta
Externí odkaz:
http://arxiv.org/abs/2104.12892
Publikováno v:
In Journal of Differential Equations 5 November 2023 372:458-504
Given a family of locally Lipschitz vector fields $X(x)=(X_1(x),\dots,X_m(x))$ on $\mathbb{R}^n$, $m\leq n$, we study functionals depending on $X$. We prove an integral representation for local functionals with respect to $X$ and a result of $\Gamma$
Externí odkaz:
http://arxiv.org/abs/1904.06454
We prove that, in the first Heisenberg group $\mathbb{H}$, an entire locally Lipschitz intrinsic graph admitting vanishing first variation of its sub-Riemannian area and non-negative second variation must be an intrinsic plane, i.e., a coset of a two
Externí odkaz:
http://arxiv.org/abs/1809.04586
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We consider the area functional for t-graphs in the sub-Riemannian Heisenberg group and study minimizers of the associated Dirichlet problem. We prove that, under a bounded slope condition on the boundary datum, there exists a unique minimizer and th
Externí odkaz:
http://arxiv.org/abs/1307.4442
In this paper we provide a characterization of intrinsic Lipschitz graphs in the sub-Riemannian Heisenberg groups in terms of their distributional gradients. Moreover, we prove the equivalence of different notions of continuous weak solutions to the
Externí odkaz:
http://arxiv.org/abs/1202.3083