Zobrazeno 1 - 10
of 90
pro vyhledávání: '"Cascante, Carme"'
For a fixed analytic function g on the unit disc, we consider the analytic paraproducts induced by g, which are formally defined by $T_gf(z)=\int_0^zf(\zeta)g'(\zeta)d\zeta$, $S_gf(z)=\int_0^zf'(\zeta)g(\zeta)d\zeta$, and $M_gf(z)=g(z)f(z)$. We are c
Externí odkaz:
http://arxiv.org/abs/2311.05972
Publikováno v:
In Journal of Functional Analysis 15 December 2024 287(12)
Publikováno v:
Journal de Math\'ematiques Pures et Appliqu\'ees, 2021
For a fixed analytic function $g$ on the unit disc $\mathbb{D}$, we consider the analytic paraproducts induced by $g$, which are defined by $T_gf(z)= \int_0^z f(\zeta)g'(\zeta)\,d\zeta$, $S_gf(z)= \int_0^z f'(\zeta)g(\zeta)\,d\zeta$, and $M_gf(z)= f(
Externí odkaz:
http://arxiv.org/abs/2111.08540
Publikováno v:
In Journal de mathématiques pures et appliquées August 2024 188:179-214
We characterize the boundedness of Hankel bilinear forms on a product of generalized Fock-Sobolev spaces on ${\mathbb C}^n$ with respect to the weight $(1+|z|)^\rho e^{-\frac{\alpha}2|z|^{2\ell}}$, for $\ell\ge 1$, $\alpha>0$ and $\rho\in{\mathbb R}$
Externí odkaz:
http://arxiv.org/abs/1912.09241
In this paper we solve a problem posed by H. Bommier-Hato, M. Engli\v{s} and E.H. Youssfi in [3] on the boundedness of the Bergman-type projections in generalized Fock spaces. It will be a consequence of two facts: a full description of the embedding
Externí odkaz:
http://arxiv.org/abs/1712.05257
We consider Fock spaces $F^{p,\ell}_{\alpha}$ of entire functions on ${\mathbb C}$ associated to the weights $e^{-\alpha |z|^{2\ell}}$, where $\alpha>0$ and $\ell$ is a positive integer. We compute explicitly the corresponding Bergman kernel associat
Externí odkaz:
http://arxiv.org/abs/1712.05250
Publikováno v:
In Journal de mathématiques pures et appliquées February 2022 158:293-319
Publikováno v:
In Journal of Mathematical Analysis and Applications 1 December 2021 504(1)
We obtain Littlewood-Paley formulas for Fock spaces $\mathcal{F}^q_{\beta,\omega}$ induced by weights $\omega\in A^{restricted}_\infty=\cup_{1\le p<\infty}A^{restricted}_{p}$, where $A^{restricted}_{p}$ is the class of weights such that the Bergman p
Externí odkaz:
http://arxiv.org/abs/1612.07458