Zobrazeno 1 - 10
of 32
pro vyhledávání: '"Carvalho, Marcos L. M."'
In the present work, we consider existence and multiplicity of positive solutions for nonlocal elliptic problems driven by the Stein-Weiss problem with concave-convex nonlinearities defined in the whole space $\mathbb{R}^N$. More precisely, we consid
Externí odkaz:
http://arxiv.org/abs/2411.06168
It is established existence and multiplicity of solution for the following class of quasilinear elliptic problems $$ \left\{ \begin{array}{lr} -\Delta_\Phi u = \lambda a(x) |u|^{q-2}u + |u|^{p-2}u, & x\in\Omega, u = 0, & x \in \partial \Omega, \end{a
Externí odkaz:
http://arxiv.org/abs/2410.00861
It is established existence of ground and bound state solutions for Choquard equation considering concave-convex nonlinearities in the following form $$ \begin{array}{rcl} -\Delta u +V(x) u &=& (I_\alpha* |u|^p)|u|^{p-2}u+ \lambda |u|^{q-2}u, \, u \i
Externí odkaz:
http://arxiv.org/abs/2102.11335
In this paper, we prove the existence and multiplicity of solutions for a large class of quasilinear problems on a nonreflexive Orlicz-Sobolev space. Here, we use the variational methods developed by Szulkin combined with some properties of the weak$
Externí odkaz:
http://arxiv.org/abs/2102.06044
In this paper we are concerned with some abstract results regarding to fractional Orlicz-Sobolev spaces. Precisely, we ensure the compactness embedding for the weighted fractional Orlicz-Sobolev space into the Orlicz spaces, provided the weight is un
Externí odkaz:
http://arxiv.org/abs/2010.10277
In this paper, we deal with equations of variational form which Nahari manifolds can contain more than two different types of critical points. We introduce a method of separating critical points on the Nahari manifold, based on the use of nonlinear g
Externí odkaz:
http://arxiv.org/abs/1906.07759
In this paper, we are concerned with a Kirchhoff problem in the presence of a strongly-singular term perturbed by a discontinuous nonlinearity of the Heaviside type in the setting of Orlicz-Sobolev space. The presence of both strongly-singular and no
Externí odkaz:
http://arxiv.org/abs/1901.00165
This paper deals with existence and regularity of positive solutions of singular elliptic problems on a smooth bounded domain with Dirichlet boundary conditions involving the $\Phi$-Laplacian operator. The proof of existence is based on a variant of
Externí odkaz:
http://arxiv.org/abs/1703.08608
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.