Zobrazeno 1 - 10
of 14
pro vyhledávání: '"Carter Kolbeck"'
Autor:
Jordan Wong, Vicky Huang, Derek Wells, Joshua Giambattista, Jonathan Giambattista, Carter Kolbeck, Karl Otto, Elantholi P. Saibishkumar, Abraham Alexander
Publikováno v:
Radiation Oncology, Vol 16, Iss 1, Pp 1-10 (2021)
Abstract Purpose We recently described the validation of deep learning-based auto-segmented contour (DC) models for organs at risk (OAR) and clinical target volumes (CTV). In this study, we evaluate the performance of implemented DC models in the cli
Externí odkaz:
https://doaj.org/article/afc15d7e13a2488393fe45995124b7be
Autor:
Jordan Wong, Vicky Huang, Joshua A. Giambattista, Tony Teke, Carter Kolbeck, Jonathan Giambattista, Siavash Atrchian
Publikováno v:
Frontiers in Oncology, Vol 11 (2021)
PurposeDeep learning-based auto-segmented contour (DC) models require high quality data for their development, and previous studies have typically used prospectively produced contours, which can be resource intensive and time consuming to obtain. The
Externí odkaz:
https://doaj.org/article/bbd92e72262e47e38a5834586fbc9139
Autor:
Michael Kucharczyk, Krista Chytyk-Praznik, Joshua Giambattista, Carter Kolbeck, Nick Chng, Gopal Bala, James Robar, Andrew Beam
Publikováno v:
Radiotherapy and Oncology. 174:S11
Autor:
Jonathan Giambattista, Derek Wells, Carter Kolbeck, Karl Otto, Vicky Huang, Elantholi P. Saibishkumar, Jordan Wong, Abraham Alexander, Joshua Giambattista
Publikováno v:
Radiation Oncology (London, England)
Radiation Oncology, Vol 16, Iss 1, Pp 1-10 (2021)
Radiation Oncology, Vol 16, Iss 1, Pp 1-10 (2021)
Purpose We recently described the validation of deep learning-based auto-segmented contour (DC) models for organs at risk (OAR) and clinical target volumes (CTV). In this study, we evaluate the performance of implemented DC models in the clinical rad
Autor:
Jonathan Giambattista, Carter Kolbeck, Jordan Wong, Vicky Huang, Karl Otto, Derek Wells, Joshua Giambattista, Abraham Alexander
Publikováno v:
Radiotherapy and Oncology. 150:S14-S15
Autor:
Abraham Alexander, Derek Wells, Carter Kolbeck, Jonathan Giambattista, V. Huang, Joshua Giambattista, Karl Otto, J. Wong
Publikováno v:
International Journal of Radiation Oncology*Biology*Physics. 108:S101
Publikováno v:
International Journal of Radiation Oncology*Biology*Physics. 108:e284
Autor:
Vicky Huang, Carter Kolbeck, Jonathan Giambattista, Joshua Giambattista, Jordan Wong, Jasbir Jaswal
Publikováno v:
Radiotherapy and Oncology. 150:S34
Autor:
Nevin McVicar, Jonathan Giambattista, Derek Wells, Jordan Wong, Sally L. Smith, Carter Kolbeck, Lovedeep Gondara, Allan Fong, Joshua Giambattista, Abraham Alexander
Publikováno v:
International Journal of Radiation Oncology*Biology*Physics. 105:S70-S71
Background Deep learning-based auto-segmented contours (DC) aim to alleviate labour intensive contouring of organs at risk (OAR) and clinical target volumes (CTV). Most previous DC validation studies have a limited number of expert observers for comp
Autor:
Chris Eliasmith, Carter Kolbeck
Publikováno v:
Topics in Cognitive Science. 7:323-335
It has been suggested that Marr took the three levels he famously identifies to be independent. In this paper, we argue that Marr's view is more nuanced. Specifically, we show that the view explicitly articulated in his work attempts to integrate the