Zobrazeno 1 - 10
of 29
pro vyhledávání: '"Carter Bays"'
Autor:
Carter Bays, Richard H. Hudson
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 2, Iss 1, Pp 111-119 (1979)
Let πb,c(x) denote the number of primes ≤x and ≡c(modb), and for positive integers x let Δb(x,c,l)=πb,c(x)−πb,l(x). Negative values of Δ4(x,3,1) less than 1012 occur in six widely spaced regions. The first three regions, investigated by Le
Externí odkaz:
https://doaj.org/article/ad7c6b65f53e4ab7a111ac4068e5eec0
Autor:
Carter Bays
Publikováno v:
The Mathematical Artist ISBN: 9783031039850
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::9c702307bd7165b5c57a5e8ad1db88f0
https://doi.org/10.1007/978-3-031-03986-7_9
https://doi.org/10.1007/978-3-031-03986-7_9
Autor:
Carter Bays
“This is a rare thing: an original, intelligent novel that's not just a perfect summer beach read, but one that deserves serious awards consideration as well. Put down your phone and pick it up.... A major accomplishment.”—Kirkus Reviews (starr
Publikováno v:
Journal of Number Theory. 87(1):54-76
We examine the connections between small zeros of quadratic L-functions, Chebyshev's bias, and class numbers of imaginary quadratic fields.
Autor:
Carter Bays, Richard H. Hudson
Publikováno v:
Mathematics of Computation. 69:1285-1297
Let π(x) denote the number of primes li(x). This improves earlier bounds of Skewes, Lehman, and te Riele. We also plot more than 10000 values of π(x)-li(x) in four different regions, including the regions discovered by Lehman, te Riele, and the aut
Autor:
Richard H. Hudson, Carter Bays
Publikováno v:
Mathematics of Computation. 69:861-867
Seven widely spaced regions of integers with π4,3(x) < π4,1(x) have been discovered using conventional prime sieves. Assuming the generalized Riemann hypothesis, we modify a result of Davenport in a way suggested by the recent work of Rubinstein an
Autor:
W. E. Sharp, Carter Bays
Publikováno v:
Computers & Geosciences. 19:593-600
Autor:
Carter Bays
Publikováno v:
Game of Life Cellular Automata ISBN: 9781849962162
Game of Life Cellular Automata
Game of Life Cellular Automata
Here we explore the Game of Life (GoL) where it exists in other cellular automata (CA) “universes” of from one to four dimensions. We also look at various tessellations — triangular, pentagonal, hexagonal, and three dimensional “densely packe
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::a279b205923015da7d3533f0e4c31f7b
https://doi.org/10.1007/978-1-84996-217-9_17
https://doi.org/10.1007/978-1-84996-217-9_17
Autor:
Carter Bays
Publikováno v:
Game of Life Cellular Automata ISBN: 9781849962162
Game of Life Cellular Automata
Game of Life Cellular Automata
Although cellular automata has origins dating from the 1950s, widespread popular interest did not develop until John Conway’s “Game of Life” cellular automaton was initially revealed to the public in a 1970 Scientific American article (Gardner
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::7bcc3d7eb10730bbc290c090c8c0fad4
https://doi.org/10.1007/978-1-84996-217-9_1
https://doi.org/10.1007/978-1-84996-217-9_1