Zobrazeno 1 - 10
of 29
pro vyhledávání: '"Caroline Schultealbert"'
Publikováno v:
Chemical Engineering Transactions, Vol 95 (2022)
In this work, the general motivation of having a reliable way for technical odour measurement is laid out along with current standardisation work and accompanying research. Over the last years, a number of devices have been designed for continuous od
Externí odkaz:
https://doaj.org/article/d30a56753bc240c7b4c69754b00ffe66
Autor:
Yannick Robin, Johannes Amann, Tobias Baur, Payman Goodarzi, Caroline Schultealbert, Tizian Schneider, Andreas Schütze
Publikováno v:
Atmosphere, Vol 12, Iss 11, p 1487 (2021)
With air quality being one target in the sustainable development goals set by the United Nations, accurate monitoring also of indoor air quality is more important than ever. Chemiresistive gas sensors are an inexpensive and promising solution for the
Externí odkaz:
https://doaj.org/article/32de8cf28a6340d7a1a1ee0c236072a7
Publikováno v:
Atmosphere, Vol 12, Iss 5, p 647 (2021)
More and more metal oxide semiconductor (MOS) gas sensors with digital interfaces are entering the market for indoor air quality (IAQ) monitoring. These sensors are intended to measure volatile organic compounds (VOCs) in indoor air, an important air
Externí odkaz:
https://doaj.org/article/7160c08aaf5f49cb910da685598acac0
Publikováno v:
Atmosphere, Vol 12, Iss 3, p 366 (2021)
Hydrogen is a ubiquitous but often neglected gas. In analytical measurements hydrogen—as a harmless gas—often is not considered so no studies on hydrogen in indoor air can be found. For metal oxide semiconductor (MOS) gas sensors that are increas
Externí odkaz:
https://doaj.org/article/7a41e6e2032549dea1f971ffdaffce1a
Publikováno v:
Sensors, Vol 18, Iss 3, p 744 (2018)
Dedicated methods for quantification and identification of reducing gases based on model-based temperature-cycled operation (TCO) using a single commercial MOS gas sensor are presented. During high temperature phases the sensor surface is highly oxid
Externí odkaz:
https://doaj.org/article/35bb18c9a5b9468eb629d0c47b02317e
Metal oxide semiconductor (MOS) gas sensors are excellent candidates for real-time indoor air quality monitoring due to their outstanding sensitivity for a broad spectrum of gases and low price. Selective detection and quantification in complex envir
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::23b36faa5480c384bccc2c1f6196b75e
Zusammenfassung In jüngster Vergangenheit sind immer mehr Halbleitergassensoren im Bereich Innenraumluftqualität auf den Markt gekommen. Diese messen die Gesamtbelastung an flüchtigen organischen Komponenten (engl.: volatile organic compounds, kur
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::473b7dede6348b213590522f85bc6780
Autor:
Caroline Schultealbert, Birte Mull, Matthias Richter, Tilman Sauerwald, Wolfgang Horn, Doris Brödner
Recent research into emissions of (semi-)volatile organic compounds [(S)VOC] from solid materials has focused on the development of suitable reference materials for quality assurance/quality control of emission test chamber measurements, which fulfil
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::82f394e646660034df0fcf77852c88ef
This article presents a test gas generation system designed to generate ppb level gas concentrations from gas cylinders. The focus is on permanent gases and volatile organic compounds (VOCs) for applications like indoor and outdoor air quality monito
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c543d11659b3afde86b0c0c8ef9a42d6
Publikováno v:
Journal of Sensors and Sensor Systems, Vol 7, Pp 411-419 (2018)
A novel method for the detection of short pulses of gas at very low concentrations, the differential surface reduction (DSR), is presented. DSR is related to the temperature pulsed reduction (TPR) method. In a high temperature phase, e.g., at 400
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ac2dc8589b21246f861de3d814d47743