Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Carolina Urzúa-Torres"'
Publikováno v:
BIT Numerical Mathematics, 61 (4)
BIT Numerical Mathematics
BIT Numerical Mathematics, 2021, ⟨10.1007/s10543-021-00859-y⟩
BIT Numerical Mathematics, Springer Verlag, 2021, ⟨10.1007/s10543-021-00859-y⟩
Bit (Lisse): numerical mathematics, 61(4)
BIT Numerical Mathematics
BIT Numerical Mathematics, 2021, ⟨10.1007/s10543-021-00859-y⟩
BIT Numerical Mathematics, Springer Verlag, 2021, ⟨10.1007/s10543-021-00859-y⟩
Bit (Lisse): numerical mathematics, 61(4)
A complex screen is an arrangement of panels that may not be even locally orientable because of junction lines. A comprehensive trace space framework for first-kind variational boundary integral equations on complex screens has been established in Cl
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2c53d27ae621b7929ecff552afe74f2b
https://hdl.handle.net/20.500.11850/487717
https://hdl.handle.net/20.500.11850/487717
Autor:
Ralf Hiptmair, Carolina Urzúa-Torres
We consider the electric field integral equation (EFIE) modeling the scattering of time-harmonic electromagnetic waves at a perfectly conducting screen. When discretizing the EFIE by means of low-order Galerkin boundary methods (BEM), one obtains lin
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2dea3a87f4b3cff8c6cb68c22ce7eccc
https://doi.org/10.1142/s0218202520500347
https://doi.org/10.1142/s0218202520500347
Autor:
Ralf Hiptmair, Carolina Urzúa-Torres
Publikováno v:
Integral Equations and Operator Theory, 92 (1)
We construct inverses of the variational electric field boundary integral operator up to compact perturbations on orientable topologically simple screens. We describe them as solution operators of variational problems set in low-regularity standard t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e8a1b8beb91e5eb1332af7ba5ff2eb74
https://doi.org/10.1007/s00020-020-2564-9
https://doi.org/10.1007/s00020-020-2564-9
We consider first-kind weakly singular and hypersingular boundary integral operators for the Laplacian on screens in R3 and their Galerkin discretization by means of low-order piecewise polynomial boundary elements. For the resulting linear systems o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::54eb83b282a92b74d52a60279c9cbb19
https://ora.ox.ac.uk/objects/uuid:2b570de9-2a33-4f4e-8b4e-29382a625170
https://ora.ox.ac.uk/objects/uuid:2b570de9-2a33-4f4e-8b4e-29382a625170
Publikováno v:
Numerische Mathematik, 148(1)
We propose an operator preconditioner for general elliptic pseudodifferential equations in a domain $\Omega$, where $\Omega$ is either in $\mathbb{R}^n$ or in a Riemannian manifold. For linear systems of equations arising from low-order Galerkin disc
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5cac8d3c878c1e2d603dc7885d90f0eb
Publikováno v:
Integral Equations and Operator Theory. 90
We establish new explicit expressions and variational forms of boundary integral operators that provide the exact inverses of the weakly singular and hypersingular operators for $$-\Delta $$ on flat disks. We derive closed-form formulas for their sin
Publikováno v:
Journal of Computational Mathematics-International Edition
Journal of Computational Mathematics-International Edition-, Global Science Press, 2018, 36 (1), pp.128-158. ⟨10.4208/jcm.1612-m2016-0495⟩
Journal of Computational Mathematics-International Edition-, Global Science Press, 2018, 36 (1), pp.128-158. ⟨10.4208/jcm.1612-m2016-0495⟩
International audience; We present a fast Galerkin spectral method to solve logarithmic singular equations on segments. The proposed method uses weighted first-kind Chebyshev polynomials. Convergence rates of several orders are obtained for fractiona
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::902fc8693ba165f7eda5f201db4c5edb
https://hal.archives-ouvertes.fr/hal-01956620
https://hal.archives-ouvertes.fr/hal-01956620
Publikováno v:
SIAM Journal on Numerical Analysis. 52:2295-2314
Boundary value problems for the Poisson equation in the exterior of an open bounded Lipschitz curve $\mathcal{C}$ can be recast as first-kind boundary integral equations featuring weakly singular or hypersingular boundary integral operators (BIOs). B