Zobrazeno 1 - 10
of 125
pro vyhledávání: '"Carnahan, Scott"'
Autor:
Carnahan, Scott
Together with their 1988 construction of the monster vertex algebra $V^\natural$, Frenkel, Lepowsky, and Meurman showed that the largest sporadic simple group, known as the Fischer-Griess monster, forms the symmetry group of an infinite dimensional a
Externí odkaz:
http://arxiv.org/abs/2206.15391
Autor:
Carnahan, Scott, Urano, Satoru
We propose a conjecture that is a substantial generalization of the genus zero assertions in both Monstrous Moonshine and Modular Moonshine. Our conjecture essentially asserts that if we are given any homomorphism to the complex numbers from a repres
Externí odkaz:
http://arxiv.org/abs/2111.09404
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Carnahan, Scott
Monstrous Moonshine was extended in two complementary directions during the 1980s and 1990s, giving rise to Norton's Generalized Moonshine conjecture and Ryba's Modular Moonshine conjecture. Both conjectures have been unconditionally resolved in the
Externí odkaz:
http://arxiv.org/abs/1804.04161
Publikováno v:
In Solid State Nuclear Magnetic Resonance June 2022 119
Publikováno v:
SIGMA 14 (2018), 114, 8 pages
Given a holomorphic $C_2$-cofinite vertex operator algebra $V$ with graded dimension $j-744$, Borcherds's proof of the monstrous moonshine conjecture implies any finite order automorphism of $V$ has graded trace given by a "completely replicable func
Externí odkaz:
http://arxiv.org/abs/1712.10160
Autor:
Carnahan, Scott
Publikováno v:
SIGMA 15 (2019), 030, 36 pages
We construct a self-dual integral form of the moonshine vertex operator algebra, and show that it has symmetries given by the Fischer-Griess monster simple group. The existence of this form resolves the last remaining open assumption in the proof of
Externí odkaz:
http://arxiv.org/abs/1710.00737
Autor:
Carnahan, Scott
Publikováno v:
Communications in Number Theory and Physics vol 12 no 2 (2018) 305-334
We show using Borcherds products that for any fixed-point free automorphism of the Leech lattice satisfying a "no massless states" condition, the corresponding cyclic orbifold of the Leech lattice vertex operator algebra is isomorphic to the Monster
Externí odkaz:
http://arxiv.org/abs/1707.02954
Autor:
Carnahan, Scott
We give a new, simpler proof that the canonical actions of finite groups on Fricke-type Monstrous Lie algebras yield genus zero functions in Generalized Monstrous Moonshine, using a Borcherds-Kac-Moody Lie algebra decomposition due to Jurisich. We de
Externí odkaz:
http://arxiv.org/abs/1701.07846
Autor:
Atterberry, Benjamin A., Carnahan, Scott L., Chen, Yunhua, Venkatesh, Amrit, Rossini, Aaron J.
Publikováno v:
In Journal of Magnetic Resonance March 2022 336