Zobrazeno 1 - 10
of 22
pro vyhledávání: '"Carlos Gómez-Huélamo"'
Autor:
J. Felipe Arango, Luis M. Bergasa, Pedro A. Revenga, Rafael Barea, Elena López-Guillén, Carlos Gómez-Huélamo, Javier Araluce, Rodrigo Gutiérrez
Publikováno v:
Sensors, Vol 20, Iss 21, p 6121 (2020)
This paper presents the development process of a robust and ROS-based Drive-By-Wire system designed for an autonomous electric vehicle from scratch over an open source chassis. A revision of the vehicle characteristics and the different modules of ou
Externí odkaz:
https://doaj.org/article/88e9ccec266d404d8372b62825f1ead8
Autor:
Rodrigo Gutiérrez, Elena López-Guillén, Luis M. Bergasa, Rafael Barea, Óscar Pérez, Carlos Gómez-Huélamo, Felipe Arango, Javier del Egido, Joaquín López-Fernández
Publikováno v:
Sensors, Vol 20, Iss 14, p 4062 (2020)
Automated Driving Systems (ADSs) require robust and scalable control systems in order to achieve a safe, efficient and comfortable driving experience. Most global planners for autonomous vehicles provide as output a sequence of waypoints to be follow
Externí odkaz:
https://doaj.org/article/ed6dd1a44eb34e86aeeca28e84e3a7a5
Autor:
Álvaro Sáez, Luis M. Bergasa, Elena López-Guillén, Eduardo Romera, Miguel Tradacete, Carlos Gómez-Huélamo, Javier del Egido
Publikováno v:
Sensors, Vol 19, Iss 3, p 503 (2019)
The interest in fisheye cameras has recently risen in the autonomous vehicles field, as they are able to reduce the complexity of perception systems while improving the management of dangerous driving situations. However, the strong distortion inhere
Externí odkaz:
https://doaj.org/article/d9d8148488934664b87004b4dd750f87
Autor:
Carlos Gómez-Huélamo, Javier Del Egido, Luis Miguel Bergasa, Rafael Barea, Elena López-Guillén, Javier Araluce, Miguel Antunes
Publikováno v:
Multimedia Tools and Applications. 81:26915-26940
Autonomous Driving (AD) promises an efficient, comfortable and safe driving experience. Nevertheless, fatalities involving vehicles equipped with Automated Driving Systems (ADSs) are on the rise, especially those related to the perception module of t
Autor:
Óscar Pérez-Gil, Rafael Barea, Elena López-Guillén, Luis M. Bergasa, Carlos Gómez-Huélamo, Rodrigo Gutiérrez, Alejandro Díaz-Díaz
Publikováno v:
Multimedia Tools and Applications. 81:3553-3576
Nowadays, Artificial Intelligence (AI) is growing by leaps and bounds in almost all fields of technology, and Autonomous Vehicles (AV) research is one more of them. This paper proposes the using of algorithms based on Deep Learning (DL) in the contro
Autor:
Carlos Gómez-Huélamo, Javier Del Egido, Luis M. Bergasa, Rafael Barea, Elena López-Guillén, Felipe Arango, Javier Araluce, Joaquín López
Publikováno v:
Multimedia Tools and Applications. 81:4213-4240
Urban complex scenarios are the most challenging situations in the field of Autonomous Driving (AD). In that sense, an AD pipeline should be tested in countless environments and scenarios, escalating the cost and development time exponentially with a
Publikováno v:
2021 IEEE Intelligent Vehicles Symposium (IV).
Behaviour prediction in multi-agent and dynamic environments is crucial in the context of intelligent vehicles, due to the complex interactions and representations of road participants (such as vehicles, cyclists or pedestrians) and road context info
Autor:
Rafael Barea, Rodrigo Gutiérrez, Carlos Gómez-Huélamo, Luis M. Bergasa, J. Felipe Arango, Javier Araluce
Publikováno v:
2021 IEEE Intelligent Vehicles Symposium (IV).
This paper introduces a method to validate autonomous navigation frameworks, in simulation using CARLA Simulator, fulfilling the requirements of the Euro-NCAP evaluation. We propose the protocol for evaluating an unexpected pedestrian scenario, where
Autor:
Carlos Gómez-Huélamo, Rodrigo Gutiérrez, Elena López-Guillén, Rafael Barea, Luis M. Bergasa, Alejandro Díaz, Oscar Perez-Gill
Publikováno v:
2021 IEEE Intelligent Vehicles Symposium (IV).
This paper presents a Deep Reinforcement Learning (DRL) framework adapted and trained for Autonomous Vehicles (AVs) purposes. To do that, we propose a novel software architecture for training and validating DRL based control algorithms that exploits
Autor:
Luis M. Bergasa, Javier Araluce, Joaquín López, Rafael Barea, Javier Del Egido, Elena López-Guillén, Felipe Arango, Carlos Gómez-Huélamo
Publikováno v:
Advances in Intelligent Systems and Computing ISBN: 9783030625788
WAF
WAF
This work presents the validation of our fully-autonomous driving architecture in the CARLA open-source simulator, by using some challenging driving scenarios inspired on the CARLA Autonomous Driving Challenge (CADC), focusing on our decision-making
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::317567c5f8bfcce4c1751c9c28f6985d
https://doi.org/10.1007/978-3-030-62579-5_4
https://doi.org/10.1007/978-3-030-62579-5_4