Zobrazeno 1 - 10
of 11
pro vyhledávání: '"Carlos Eiras-Franco"'
Publikováno v:
Proceedings, Vol 54, Iss 1, p 7 (2020)
This work presents EADMNC (Explainable Anomaly Detection on Mixed Numerical and Categorical spaces), a novel approach to address explanation using an anomaly detection algorithm, ADMNC, which provides accurate detections on mixed numerical and catego
Externí odkaz:
https://doaj.org/article/2f77274052f844a6b628cc7397d3e175
Publikováno v:
Proceedings, Vol 2, Iss 18, p 1171 (2018)
Obtaining relevant information from the vast amount of data generated by interactions in a market or, in general, from a dyadic dataset, is a broad problem of great interest both for industry and academia. Also, the interpretability of machine learni
Externí odkaz:
https://doaj.org/article/7fe34e9dd0d24b7497a9fd0f2a55a353
Publikováno v:
RUC. Repositorio da Universidade da Coruña
instname
Scopus
RUO. Repositorio Institucional de la Universidad de Oviedo
instname
Scopus
RUO. Repositorio Institucional de la Universidad de Oviedo
Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG [Abstract] Feature selection algorithms, such as ReliefF, are very important for processing high-dimensionality data sets. However, widespread use of popular and effective s
Autor:
Jorge Meira, Carlos Eiras-Franco, Verónica Bolón-Canedo, Goreti Marreiros, Amparo Alonso-Betanzos
This paper presents LSHAD, an anomaly detection (AD) method based on Locality Sensitive Hashing (LSH), capable of dealing with large-scale datasets. The resulting algorithm is highly parallelizable and its implementation in Apache Spark further incre
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6a2968c604880c1742a9aae2ef67faef
https://hdl.handle.net/10400.22/22041
https://hdl.handle.net/10400.22/22041
Publikováno v:
RUC. Repositorio da Universidade da Coruña
Universitat Oberta de Catalunya (UOC)
RUC: Repositorio da Universidade da Coruña
Universidade da Coruña (UDC)
Proceedings, Vol 54, Iss 7, p 7 (2020)
Universitat Oberta de Catalunya (UOC)
RUC: Repositorio da Universidade da Coruña
Universidade da Coruña (UDC)
Proceedings, Vol 54, Iss 7, p 7 (2020)
[Abstract] This work presents EADMNC (Explainable Anomaly Detection on Mixed Numerical and Categorical spaces), a novel approach to address explanation using an anomaly detection algorithm, ADMNC, which provides accurate detections on mixed numerical
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b2e0c3ad61cc0582d122512b8193df9a
http://hdl.handle.net/2183/26501
http://hdl.handle.net/2183/26501
Autor:
Carlos Eiras-Franco, David Martínez-Rego, César Piñeiro, Amparo Alonso-Betanzos, Leslie Kanthan, Antonio Bahamonde, Bertha Guijarro-Berdiñas
Publikováno v:
Scopus
RUO. Repositorio Institucional de la Universidad de Oviedo
instname
RUO: Repositorio Institucional de la Universidad de Oviedo
Universidad de Oviedo (UNIOVI)
RUO. Repositorio Institucional de la Universidad de Oviedo
instname
RUO: Repositorio Institucional de la Universidad de Oviedo
Universidad de Oviedo (UNIOVI)
The k -nearest-neighbors ( k NN) graph is a popular and powerful data structure that is used in various areas of Data Science, but the high computational cost of obtaining it hinders its use on large datasets. Approximate solutions have been describe
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::37b0064e4c01f6f94526e55f1b70797f
http://hdl.handle.net/10651/58522
http://hdl.handle.net/10651/58522
Publikováno v:
Scopus
RUO. Repositorio Institucional de la Universidad de Oviedo
instname
RUO: Repositorio Institucional de la Universidad de Oviedo
Universidad de Oviedo (UNIOVI)
RUO. Repositorio Institucional de la Universidad de Oviedo
instname
RUO: Repositorio Institucional de la Universidad de Oviedo
Universidad de Oviedo (UNIOVI)
Gaining relevant insight from a dyadic dataset, which describes interactions between two entities, is an open problem that has sparked the interest of researchers and industry data scientists alike. However, the existing methods have poor explainabil
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a737363b1b9bbc026a647129da4ff660
http://hdl.handle.net/10651/53678
http://hdl.handle.net/10651/53678
Autor:
Amparo Alonso-Betanzos, David Martínez-Rego, Bertha Guijarro-Berdiñas, Antonio Bahamonde, Carlos Eiras-Franco
Publikováno v:
Scopus
RUO: Repositorio Institucional de la Universidad de Oviedo
Universidad de Oviedo (UNIOVI)
RUO. Repositorio Institucional de la Universidad de Oviedo
instname
RUO: Repositorio Institucional de la Universidad de Oviedo
Universidad de Oviedo (UNIOVI)
RUO. Repositorio Institucional de la Universidad de Oviedo
instname
This work presents the ADMNC method, designed to tackle anomaly detection for large-scale problems with a mixture of categorical and numerical input variables. A flexible parametric probability measure is adjusted to input data, allowing low likeliho
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ded77ab270da79a58eb048538d645ee2
http://hdl.handle.net/10651/52224
http://hdl.handle.net/10651/52224
Publikováno v:
Proceedings, Vol 2, Iss 18, p 1171 (2018)
RUC. Repositorio da Universidade da Coruña
instname
RUC. Repositorio da Universidade da Coruña
instname
Trátase dun resumo estendido da ponencia [Abstract] Obtaining relevant information from the vast amount of data generated by interactions in a market or, in general, from a dyadic dataset, is a broad problem of great interest both for industry and a
Autor:
Carlos Eiras-Franco, Amparo Alonso-Betanzos, Laura Morán-Fernández, Verónica Bolón-Canedo, Borja Seijo-Pardo
Publikováno v:
Advances in Biomedical Informatics ISBN: 9783319675121
In the last few years, we have witnessed the advent of Big Data and, more specifically, Big Dimensionality, which refers to the unprecedented number of features that are rendering existing machine learning inadequate. To be able to deal with these hi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b9d3c97cad9d7181396ceec0f7e8e5fd
https://doi.org/10.1007/978-3-319-67513-8_11
https://doi.org/10.1007/978-3-319-67513-8_11