Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Carlos D'Giano"'
Publikováno v:
Computers, Vol 9, Iss 4, p 85 (2020)
Spike-and-wave discharge (SWD) pattern detection in electroencephalography (EEG) is a crucial signal processing problem in epilepsy applications. It is particularly important for overcoming time-consuming, difficult, and error-prone manual analysis o
Externí odkaz:
https://doaj.org/article/88719ef8d0b24a24960c3b108fb37871
Publikováno v:
The Journal of Biomedical Research
The Journal of Biomedical Research, 2020, 34 (3), pp.203-210. ⟨10.7555/JBR.33.20190012⟩
Journal of Biomedical Research
The Journal of Biomedical Research, 2020, 34 (3), pp.203-210. ⟨10.7555/JBR.33.20190012⟩
Journal of Biomedical Research
The two-point central difference is a common algorithm in biological signal processing and is particularly useful in analyzing physiological signals. In this paper, we develop a model-based classification method to detect epileptic seizures that reli
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::74151d437b797f3183fdca339a22aadc
https://oatao.univ-toulouse.fr/26050/
https://oatao.univ-toulouse.fr/26050/
Publikováno v:
Neurología Argentina. 10:210-217
Predecir una crisis epiléptica significa la capacidad de determinar de antemano el momento de una crisis con la mayor precisión posible. Un pronóstico correcto de un evento epiléptico en aplicaciones clínicas es un problema típico en procesamie
Publikováno v:
NeuroImage
NeuroImage, Elsevier, 2017, Vol. 144 (Part. A), pp. 142-152. ⟨10.1016/j.neuroimage.2016.08.064⟩
NeuroImage, Elsevier, 2017, Vol. 144 (Part. A), pp. 142-152. ⟨10.1016/j.neuroimage.2016.08.064⟩
International audience; This paper deals with EEG source localization. The aim is to perform spatially coherent focal localization and recover temporal EEG waveforms, which can be useful in certain clinical applications. A new hier- archical Bayesian
Publikováno v:
Advances in Predictive, Preventive and Personalised Medicine ISBN: 9783030117993
This paper proposes a new algorithm for epileptic seizure onset detection in EEG signals. The algorithm relies on the measure of the entropy of observed data sequences. Precisely, the data is decomposed into different brain rhythms using wavelet mult
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e8614bd1f1fe8038118390dbf9dd55b1
https://oatao.univ-toulouse.fr/24878/
https://oatao.univ-toulouse.fr/24878/
Publikováno v:
Computers Vol.9, No.4, 2020
Repositorio Institucional (UCA)
Pontificia Universidad Católica Argentina
instacron:UCA
Computers
Computers, MDPI, 2020, 9(4) (85), pp.1-14. ⟨10.3390/computers9040085⟩
Volume 9
Issue 4
Computers, Vol 9, Iss 85, p 85 (2020)
Repositorio Institucional (UCA)
Pontificia Universidad Católica Argentina
instacron:UCA
Computers
Computers, MDPI, 2020, 9(4) (85), pp.1-14. ⟨10.3390/computers9040085⟩
Volume 9
Issue 4
Computers, Vol 9, Iss 85, p 85 (2020)
Fil: Quintero-Rincón, Antonio. Pontificia Universidad Católica Argentina; Argentina Fil: Quintero-Rincón, Antonio. Fleni. Fundación para la Lucha contra la Enfermedad Neurológica Pediátrica; Argentina Fil: Muro, Valeria. Fleni. Fundación para
Publikováno v:
Biocybernetics and Biomedical Engineering
Biocybernetics and Biomedical Engineering, 2018, 38 (4), pp.877-889
Biocybernetics and Biomedical Engineering, 2018, 38 (4), pp.877-889
This paper presents a supervised classification method to accurately detect epileptic brain activity in real-time from electroencephalography (EEG) data. The proposed method has three main strengths: it has low computational cost, making it suitable
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6082259d8f8cb4250c96daf8bfb74752
http://www.sciencedirect.com/science/article/pii/S0208521618301219
http://www.sciencedirect.com/science/article/pii/S0208521618301219
Publikováno v:
Proceedings of 2017 IEEE URUCON
URUCON, 2017 IEEE
URUCON, 2017 IEEE, Oct 2017, Montevideo, Uruguay. pp.125-128
URUCON, 2017 IEEE
URUCON, 2017 IEEE, Oct 2017, Montevideo, Uruguay. pp.125-128
International audience; Pattern classification in electroencephalography (EEG) signals is an important problem in biomedical engineering since it enables the detection of brain activity, in particular the early detection of epileptic seizures. In thi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::dd64b1f2b2e277dc58ed7cc44335bc1d
https://hal.archives-ouvertes.fr/hal-02134635
https://hal.archives-ouvertes.fr/hal-02134635
Publikováno v:
VII Latin American Congress on Biomedical Engineering CLAIB 2016, Bucaramanga, Santander, Colombia, October 26th-28th, 2016 ISBN: 9789811040856
VII Latin American Congress on Biomedical Engineering CLAIB 2016
Latin American Congress on Biomedical Engineering
Latin American Congress on Biomedical Engineering, Oct 2016, Santander, Colombia. pp.13--16, ⟨10.1007/978-981-10-4086-3_4⟩
VII Latin American Congress on Biomedical Engineering CLAIB 2016
Latin American Congress on Biomedical Engineering
Latin American Congress on Biomedical Engineering, Oct 2016, Santander, Colombia. pp.13--16, ⟨10.1007/978-981-10-4086-3_4⟩
This paper presents a statistical signal processing method for the characterization of EEG of patients suffering from epilepsy. A statistical model is proposed for the signals and the Kullback-Leibler divergence is used to study the differences betwe
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ce6b45c00c9b5f86d4a7463936b69fa7
https://doi.org/10.1007/978-981-10-4086-3_4
https://doi.org/10.1007/978-981-10-4086-3_4
Publikováno v:
Journal of Physics: Conference Series
Journal of Physics: Conference Series, IOP Publishing, 2016, 20th Argentinean Bioengineering Society Congress (SABI 2015), 705 (1), pp.12--32. ⟨10.1088/1742-6596/705/1/012032⟩
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Quintero-Rincón, A, Pereyra, M A, D'Giano, C, Batatia, H & Risk, M 2016, ' A new algorithm for epilepsy seizure onset detection and spread estimation from EEG signals ', Journal of Physics: Conference Series, vol. 705, no. 1, 012032 . https://doi.org/10.1088/1742-6596/705/1/012032
Journal of Physics: Conference Series, IOP Publishing, 2016, 20th Argentinean Bioengineering Society Congress (SABI 2015), 705 (1), pp.12--32. ⟨10.1088/1742-6596/705/1/012032⟩
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Quintero-Rincón, A, Pereyra, M A, D'Giano, C, Batatia, H & Risk, M 2016, ' A new algorithm for epilepsy seizure onset detection and spread estimation from EEG signals ', Journal of Physics: Conference Series, vol. 705, no. 1, 012032 . https://doi.org/10.1088/1742-6596/705/1/012032
Appropriate diagnosis and treatment of epilepsy is a main public health issue. Patients suffering from this disease often exhibit different physical characterizations, which result from the synchronous and excessive discharge of a group of neurons in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::83d32e5c38018e38b0f7f56cab3328c1
https://hal.archives-ouvertes.fr/hal-03172254
https://hal.archives-ouvertes.fr/hal-03172254