Zobrazeno 1 - 10
of 18
pro vyhledávání: '"Carlos Alexis Gómez Ruiz"'
Autor:
Carlos Alexis Gómez Ruiz
Publikováno v:
Revista Integración, Vol 33, Iss 2, Pp 121-133 (2015)
La sucesión Tribonacci T := {Tn}n≥0 tiene valores iniciales T0 = T1 =0,T2 =1 y cada término posterior es la suma de los tres términos precedentes. En este artículo, estudiamos la ecuación Tn = kTm, donde k es una S-unidad, para un conjunto fi
Externí odkaz:
https://doaj.org/article/9b994926216d404cb5d66fceeb61c53a
Autor:
Enrique Treviño, Florian Luca, Francesco Pappalardi, Carlos Alexis Gómez Ruiz, Cyril Banderier
Publikováno v:
Revista de la Unión Matemática Argentina
Revista de la Unión Matemática Argentina, Unión Matemática Argentina, 2021, 62 (1), pp.257-274. ⟨10.33044/revuma.1798⟩
Revista de la Unión Matemática Argentina, Unión Matemática Argentina, 2021, 62 (1), pp.257-274. ⟨10.33044/revuma.1798⟩
International audience; Let a a, n, be positive integers that are relatively prime. We say that a/n can be represented as an Egyptian fraction of length k if there exist positive integers m(1), ..., m(k) such that a/n= 1/m(1) + ... + 1/m(k). Let A(k)
Autor:
Florian Luca, Carlos Alexis Gómez Ruiz
Publikováno v:
International Journal of Number Theory. 15:585-595
We consider a family of linear recurrence sequences [Formula: see text] of order [Formula: see text] whose first [Formula: see text] terms are [Formula: see text] and each term afterwards is the sum of the preceding [Formula: see text] terms. In this
Autor:
Florian Luca, Carlos Alexis Gómez Ruiz
Publikováno v:
Mathematica Slovaca
We consider for integers k ≥ 2 the k–generalized Fibonacci sequences F (k) := ( F n ( k ) ) n ≥ 2 − k , $\begin{array}{} (F_n^{(k)})_{n\geq 2-k}, \end{array} $ whose first k terms are 0, …, 0, 1 and each term afterwards is the sum of the pr
Autor:
Florian Luca, Carlos Alexis Gómez Ruiz
Publikováno v:
International Journal of Number Theory
We consider for integers [Formula: see text] the [Formula: see text]-generalized Fibonacci sequences [Formula: see text], whose first [Formula: see text] terms are [Formula: see text] and each term afterwards is the sum of the preceding [Formula: see
Autor:
Florian Luca, Carlos Alexis Gómez Ruiz
Publikováno v:
Indagationes Mathematicae
Let ( F m ) m ≥ 0 be the Fibonacci sequence given by F 0 = 0 , F 1 = 1 and F m + 2 = F m + 1 + F m , for all m ≥ 0 . In Castillo (2015), it is conjectured that 2 , 5 and 34 are the only Fibonacci numbers of the form n ! + n ( n + 1 ) 2 , for some
Publikováno v:
Periodica Mathematica Hungarica
Correction to: Periodica Mathematica Hungarica https://doi.org/10.1007/s10998-017-0226-8
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0f811163962270cfea20b8246ffb4f25
https://hdl.handle.net/21.11116/0000-0006-0EAF-721.11116/0000-000A-E7B1-921.11116/0000-0006-0EB1-3
https://hdl.handle.net/21.11116/0000-0006-0EAF-721.11116/0000-000A-E7B1-921.11116/0000-0006-0EB1-3
Autor:
Carlos Alexis Gómez Ruiz, Florian Luca
Publikováno v:
Journal of Number Theory. 170:282-301
Let k ≥ 2 and { u n ( 1 ) } n ≥ 0 , … , { u n ( k ) } n ≥ 0 be k different nondegenerate binary recurrent sequences of integers. In this paper, we show that under certain conditions, there are only finitely many of k-tuples of the form ( u n
Autor:
Carlos Alexis Gómez Ruiz, Florian Luca
Publikováno v:
Lithuanian Mathematical Journal. 56:503-517
A generalization of the Fibonacci sequence is the k-generalized Fibonacci sequence (F () )n ≥ 2 − k with some fixed integer k ≥ 2 whose first k terms are 0,…, 0, 1 and each term afterward is the sum of the preceding k terms. Carmichael’s pr
Autor:
Florian Luca, Carlos Alexis Gómez Ruiz
Publikováno v:
Journal of Number Theory. 152:182-203
A generalization of the well-known Fibonacci sequence is the k-generalized Fibonacci sequence ( F n ( k ) ) n ≥ 2 − k for some integer k ≥ 2 , whose first k terms are 0 , … , 0 , 1 and each term afterwards is the sum of the preceding k terms.