Zobrazeno 1 - 10
of 17 066
pro vyhledávání: '"Carlos Garcia"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Grial, 2018 Jan 01. 56(217), 9-10.
Externí odkaz:
https://www.jstor.org/stable/26528285
Autor:
Chaves da Silva, Rodrigo António rachavesilva@yahoo.com.br
Publikováno v:
Teuken Bidikay: Revista Latinoamericana de Investigación en Organizaciones, Ambiente y Sociedad. jul-dic2020, Vol. 11 Issue 17, p33-50. 18p.
Autor:
Katyara, Sunny, Sharma, Suchita, Damacharla, Praveen, Santiago, Carlos Garcia, Dhirani, Lubina, Chowdhry, Bhawani Shankar
As the manufacturing industry shifts from mass production to mass customization, there is a growing emphasis on adopting agile, resilient, and human-centric methodologies in line with the directives of Industry 5.0. Central to this transformation is
Externí odkaz:
http://arxiv.org/abs/2409.10784
Autor:
Katyara, Sunny, Sharma, Suchita, Damacharla, Praveen, Santiago, Carlos Garcia, O'Farrell, Francis, Long, Philip
Designing an efficient and resilient human-robot collaboration strategy that not only upholds the safety and ergonomics of shared workspace but also enhances the performance and agility of collaborative setup presents significant challenges concernin
Externí odkaz:
http://arxiv.org/abs/2409.08166
Data following an interval structure are increasingly prevalent in many scientific applications. In medicine, clinical events are often monitored between two clinical visits, making the exact time of the event unknown and generating outcomes with a r
Externí odkaz:
http://arxiv.org/abs/2408.16381
Autor:
Katsarou, Styliani, Carminati, Francesca, Dlask, Martin, Braojos, Marta, Patra, Lavena, Perkins, Richard, Ling, Carlos Garcia, Paskevich, Maria
A good understanding of player preferences is crucial for increasing content relevancy, especially in mobile games. This paper illustrates the use of attentive models for producing item recommendations in a mobile game scenario. The methodology compr
Externí odkaz:
http://arxiv.org/abs/2408.06799
In this paper, we present a method using Deep Convolutional Neural Networks (DCNNs) to detect common glitches in video games. The problem setting consists of an image (800x800 RGB) as input to be classified into one of five defined classes, normal im
Externí odkaz:
http://arxiv.org/abs/2406.08231
Autor:
Rojas, Pablo
Publikováno v:
Guaraguao, 2020 Jan 01. 24(63), 153-156.
Externí odkaz:
https://www.jstor.org/stable/27110844