Zobrazeno 1 - 3
of 3
pro vyhledávání: '"Carlin Purcell"'
Autor:
Allan B. Massie, Eric K.H. Chow, Sandra R. DiBrito, Kyle R. Jackson, Dorry L. Segev, Amy D. Waterman, Sommer E. Gentry, Christine E. Haugen, Carlin Purcell, Jacqueline M. Garonzik Wang, Courtenay M. Holscher, Alvin G. Thomas, Matthew Ronin
Publikováno v:
Holscher, CM; Jackson, K; Chow, EKH; Thomas, AG; Haugen, CE; DiBrito, SR; et al.(2018). Kidney exchange match rates in a large multicenter clearinghouse. AMERICAN JOURNAL OF TRANSPLANTATION, 18(6), 1510-1517. doi: 10.1111/ajt.14689. UCLA: Retrieved from: http://www.escholarship.org/uc/item/9td04620
American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons, vol 18, iss 6
American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons, vol 18, iss 6
Kidney paired donation (KPD) can facilitate living donor transplantation for candidates with an incompatible donor, but requires waiting for a match while experiencing the morbidity of dialysis. The balance between waiting for KPD vs desensitization
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c935ed551f5e80b4880d2a4621a461c4
https://europepmc.org/articles/PMC6082363/
https://europepmc.org/articles/PMC6082363/
Autor:
Jonathan Gerhard, Bruce E. Sagan, Lindsey R. Campbell, Thomas Grubb, Carlin Purcell, Samantha Dahlberg, Robert Dorward
A restricted growth function (RGF) of length n is a sequence w = w_1 w_2 ... w_n of positive integers such that w_1 = 1 and w_i is at most 1 + max{w_1,..., w_{i-1}} for i at least 2. RGFs are of interest because they are in natural bijection with set
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d1307557dc5447ad82e5c99fa8dadd94
Autor:
Robert Dorward, Lindsey Reppuhn, Samantha Dahlberg, Carlin Purcell, Jonathan Gerhard, Bruce E. Sagan, Thomas Grubb
A set partition $\sigma$ of $[n]=\{1,\dots,n\}$ contains another set partition $\pi$ if restricting $\sigma$ to some $S\subseteq[n]$ and then standardizing the result gives $\pi$. Otherwise we say $\sigma$ avoids $\pi$. For all sets of patterns consi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d3f74556f00b346ebbdda9cbc56081e7