Zobrazeno 1 - 10
of 61
pro vyhledávání: '"Carlet, Guido"'
We study the Dubrovin equation of the infinite-dimensional 2D Toda Dubrovin-Frobenius manifold at its irregular singularity. We first revisit the definition of the canonical coordinates, proving that they emerge naturally as generalized eigenvalues o
Externí odkaz:
http://arxiv.org/abs/2203.13142
Publikováno v:
Lett. Math. Phys. 108 (2018), no. 10, 2229-2253
We classify the dispersive Poisson brackets with one dependent variable and two independent variables, with leading order of hydrodynamic type, up to Miura transformations. We show that, in contrast to the case of a single independent variable for wh
Externí odkaz:
http://arxiv.org/abs/1707.03703
Publikováno v:
J. \'Ec. polytech. Math. 5 (2018), 149-175
We use refined spectral sequence arguments to calculate known and previously unknown bi-Hamiltonian cohomology groups, which govern the deformation theory of semi-simple bi-Hamiltonian pencils of hydrodynamic type with one independent and \( N\) depe
Externí odkaz:
http://arxiv.org/abs/1611.09134
Publikováno v:
J. Geom. Phys. 114 (2017), 404-419
We compute the Poisson cohomology of a scalar Poisson bracket of Dubrovin-Novikov type with $D$ independent variables. We find that the second and third cohomology groups are generically non-vanishing in $D>1$. Hence, in contrast with the $D=1$ case,
Externí odkaz:
http://arxiv.org/abs/1512.05744
Publikováno v:
Bull. Lond. Math. Soc. 48 (2016), no. 4, 617-627
We compute the bi-Hamiltonian cohomology of an arbitrary dispersionless Poisson pencil in a single dependent variable using a spectral sequence method. As in the KdV case, we obtain that $BH^p_d(\hat{F}, d_1,d_2)$ is isomorphic to $\mathbb{R}$ for $(
Externí odkaz:
http://arxiv.org/abs/1505.03894
Publikováno v:
J. Differential Geom. 108 (2018), no. 1, 63-89
We prove that the bihamiltonian cohomology of a semisimple pencil of Poisson brackets of hydrodynamic type vanishes for almost all degrees. This implies the existence of a full dispersive deformation of a semisimple bihamiltonian structure of hydrody
Externí odkaz:
http://arxiv.org/abs/1501.04295
Publikováno v:
Comm. Math. Phys. 341 (2016), no. 3, 805-819
Using spectral sequences techniques we compute the bihamiltonian cohomology groups of the pencil of Poisson brackets of dispersionless KdV hierarchy. In particular this proves a conjecture of Liu and Zhang about the vanishing of such cohomology group
Externí odkaz:
http://arxiv.org/abs/1406.5595
We introduce and study a two-parameter family of symmetry reductions of the two-dimensional Toda lattice hierarchy, which are characterized by a rational factorization of the Lax operator into a product of an upper diagonal and the inverse of a lower
Externí odkaz:
http://arxiv.org/abs/1401.5725
Autor:
Carlet, Guido, van de Leur, Johan
Publikováno v:
J. Phys. A: Math. Theor. 46 (2013) 405205
We prove that the Hirota quadratic equations of Milanov and Tseng define an integrable hierarchy which is equivalent to the extended bigraded Toda hierarchy. In particular this proves a conjecture of Milanov-Tseng that relates the total descendent po
Externí odkaz:
http://arxiv.org/abs/1304.1632
Publikováno v:
Comm. Math. Phys. 326 (2014), no. 3, 815-849
To each partition function of cohomological field theory one can associate an Hamiltonian integrable hierarchy of topological type. The Givental group acts on such partition functions and consequently on the associated integrable hierarchies. We cons
Externí odkaz:
http://arxiv.org/abs/1201.3928