Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Carla N. Urata"'
Autor:
Alessandro A. Jammal, Atalie C. Thompson, Nara G. Ogata, Eduardo B. Mariottoni, Carla N. Urata, Vital P. Costa, Felipe A. Medeiros
Publikováno v:
Scientific Reports, Vol 9, Iss 1, Pp 1-9 (2019)
Abstract In this study we developed a deep learning (DL) algorithm that detects errors in retinal never fibre layer (RNFL) segmentation on spectral-domain optical coherence tomography (SDOCT) B-scans using human grades as the reference standard. A da
Externí odkaz:
https://doaj.org/article/ff59cbf4e58c4006b56258a938b3adfb
Autor:
Felipe A. Medeiros, Tais Estrela, Alessandro A. Jammal, Samuel I. Berchuck, Carla N. Urata, Eduardo B. Mariottoni, Nara G. Ogata
Publikováno v:
Journal of Glaucoma. 29:872-877
PReCIS:: In this study, asymmetries in corneal hysteresis (CH) between eyes of glaucoma patients were significantly associated with asymmetries in rates of visual field loss, suggesting a role of hysteresis as a risk factor for disease progression. P
Autor:
Samuel I. Berchuck, Vital Paulino Costa, Felipe A. Medeiros, Tais Estrela, Atalie C. Thompson, Alessandro A. Jammal, Susan M. Wakil, Carla N. Urata, Eduardo B. Mariottoni
Publikováno v:
Am J Ophthalmol
To compare the diagnostic performance of human gradings vs predictions provided by a machine-to-machine (M2M) deep learning (DL) algorithm trained to quantify retinal nerve fiber layer (RNFL) damage on fundus photographs.Evaluation of a machine learn
Autor:
Samuel I. Berchuck, Eduardo B. Mariottoni, Nara G. Ogata, Atalie C. Thompson, Carla N. Urata, Felipe A. Medeiros, Tais Estrela, Alessandro A. Jammal
Publikováno v:
Am J Ophthalmol
PURPOSE: To assess short-term and long-term variability on standard automated perimetry (SAP) and spectral domain optical coherence tomography (SD-OCT) in glaucoma. DESIGN: Prospective cohort. METHODS: Ordinary least squares linear regression of SAP
Autor:
Alessandro A. Jammal, Eduardo B. Mariottoni, Felipe A. Medeiros, Samuel I. Berchuck, Carla N. Urata, Atalie C. Thompson, Tais Estrela
Publikováno v:
Scientific Reports, Vol 10, Iss 1, Pp 1-9 (2020)
Scientific Reports
Scientific Reports
This study describes a segmentation-free deep learning (DL) algorithm for measuring retinal nerve fibre layer (RNFL) thickness on spectral-domain optical coherence tomography (SDOCT). The study included 25,285 B-scans from 1,338 eyes of 706 subjects.
Autor:
Felipe A. Medeiros, Sanjay Asrani, Eduardo B. Mariottoni, Henry Tseng, Atalie C. Thompson, Alessandro A. Jammal, Carla N. Urata, Tais Estrela, Samuel I. Berchuck
Publikováno v:
American journal of ophthalmology. 222
To investigate rates of structural and functional change in a large clinical population of glaucoma and glaucoma suspect patients.Retrospective cohort.Twenty-nine thousand five hundred forty-eight spectral-domain optical coherence tomography (OCT) an
Autor:
Samuel I. Berchuck, Alessandro A. Jammal, Carla N. Urata, Atalie C. Thompson, Eduardo B. Mariottoni, Felipe A. Medeiros, Tais Estrela, Fábio B. Daga, Nara G. Ogata, Zhichao Wu
Publikováno v:
Ophthalmol Glaucoma
OBJECTIVE: The “rule of 5” is a simple rule for detecting retinal nerve fiber layer (RNFL) change on spectral-domain optical coherence tomography (SDOCT), in which a loss of 5μm of global RNFL on a follow-up test is considered evidence of signif
Autor:
Nara G. Ogata, Eduardo B. Mariottoni, Alessandro A. Jammal, Atalie C. Thompson, Carla N. Urata, Felipe A. Medeiros, Vital Paulino Costa
Publikováno v:
Scientific Reports
Scientific Reports, Vol 9, Iss 1, Pp 1-9 (2019)
Scientific Reports, Vol 9, Iss 1, Pp 1-9 (2019)
In this study we developed a deep learning (DL) algorithm that detects errors in retinal never fibre layer (RNFL) segmentation on spectral-domain optical coherence tomography (SDOCT) B-scans using human grades as the reference standard. A dataset of
Publikováno v:
Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie. 257(9)
Older people present significant declines in face recognition with age. Spatial vision (high-contrast acuity) and age are the best predictors of face recognition. Visual disabilities are more common in the older population due to aging eye diseases.
Publikováno v:
Translational Vision Science & Technology
Purpose Falls are very prevalent in the older population. Visually impaired elderly patients are prone to falls as the result of visual loss and ageing. The purpose of the study was to compare the fear of falling (FoF) between primary open angle glau