Zobrazeno 1 - 10
of 11
pro vyhledávání: '"Carl Yuheng Ren"'
Publikováno v:
International Journal of Computer Vision
We describe a novel probabilistic framework for real-time tracking of multiple objects from combined depth-colour imagery. Object shape is represented implicitly using 3D signed distance functions. Probabilistic generative models based on these funct
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0079d82d9cbb66ff453076543b9c99e6
https://doi.org/10.1007/s11263-016-0978-2
https://doi.org/10.1007/s11263-016-0978-2
Autor:
Philip H. S. Torr, Olaf Kähler, David W. Murray, Xin Sun, Carl Yuheng Ren, Victor Adrian Prisacariu
Publikováno v:
IEEE transactions on visualization and computer graphics. 21(11)
Volumetric methods provide efficient, flexible and simple ways of integrating multiple depth images into a full 3D model. They provide dense and photorealistic 3D reconstructions, and parallelised implementations on GPUs achieve real-time performance
Autor:
Ming-Ming Cheng, Philip H. S. Torr, Vibhav Vineet, Stephen Hicks, Victor Adrian Prisacariu, Carl Yuheng Ren, Stuart Golodetz, Olaf Kähler, Anurag Arnab, Michael Sapienza, Julien Valentin, David W. Murray, Shahram Izadi
Publikováno v:
SIGGRAPH Emerging Technologies
We present a real-time, interactive system for the geometric reconstruction, object-class segmentation and learning of 3D scenes [Valentin et al. 2015]. Using our system, a user can walk into a room wearing a depth camera and a virtual reality headse
Autor:
Stuart Golodetz, Michael Sapienza, Julien P. C. Valentin, Vibhav Vineet, Ming-Ming Cheng, Victor A. Prisacariu, Olaf Kähler, Carl Yuheng Ren, Anurag Arnab, Stephen L. Hicks, David W. Murray, Shahram Izadi, Philip H. S. Torr
Publikováno v:
ACM SIGGRAPH 2015 Emerging Technologies.
Publikováno v:
3DV
Most current approaches for 3D object tracking rely on distinctive object appearances. While several such trackers can be instantiated to track multiple objects independently, this not only neglects that objects should not occupy the same space in 3D
Publikováno v:
ICCV
We introduce a probabilistic framework for simultaneous tracking and reconstruction of 3D rigid objects using an RGB-D camera. The tracking problem is handled using a bag-of-pixels representation and a back-projection scheme. Surface and background a
Publikováno v:
CVPR
We propose a formulation of monocular SLAM which combines live dense reconstruction with shape priors-based 3D tracking and reconstruction. Current live dense SLAM approaches are limited to the reconstruction of visible surfaces. Moreover, most of th
Autor:
N. Alberto Borghese, Victor Adrian Prisacariu, Iuri Frosio, Pier Luca Lanzi, Michele Pirovano, Carl Yuheng Ren, David W. Murray
Publikováno v:
Image Analysis and Processing – ICIAP 2013 ISBN: 9783642411809
ICIAP (1)
ICIAP (1)
Natural User Interfaces allow users to interact with virtual environments with little intermediation. Immersion becomes a vital need for such interfaces to be successful and it is achieved by making the interface invisible to the user. For cognitive
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::35973283aec066d562cf7d5baa76c39f
https://doi.org/10.1007/978-3-642-41181-6_65
https://doi.org/10.1007/978-3-642-41181-6_65
Autor:
Carl Yuheng Ren, Ian Reid
Publikováno v:
Computer Vision – ECCV 2012. Workshops and Demonstrations ISBN: 9783642338670
ECCV Workshops (2)
ECCV Workshops (2)
In this paper we present a unified energy minimization framework for model fitting and pose recovery problems in depth cameras. 3D level-set embedding functions are used to represent object models implicitly and a novel 3D chamfer matching based ener
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::8e7c0358f2128978cd6fd825732aa608
https://doi.org/10.1007/978-3-642-33868-7_8
https://doi.org/10.1007/978-3-642-33868-7_8