Zobrazeno 1 - 10
of 56
pro vyhledávání: '"Carena, Marilina"'
We give Feffermain-Stein type inequalities related to mixed estimates for Calder\'on-Zygmund operators. More precisely, given $\delta>0$, $q>1$, $\varphi(z)=z(1+\log^+z)^\delta$, a nonnegative and locally integrable function $u$ and $v\in \mathrm{RH}
Externí odkaz:
http://arxiv.org/abs/2203.04360
We prove mixed inequalities for commutators of Calder\'on-Zygmund operators (CZO) with multilinear symbols. Concretely, let $m\in\mathbb{N}$ and $\mathbf{b}=(b_1,b_2,\dots, b_m)$ be a vectorial symbol such that each component $b_i\in \mathrm{Osc}_{\m
Externí odkaz:
http://arxiv.org/abs/2108.09202
In this paper we prove mixed inequalities for the maximal operator $M_\Phi$, for general Young functions $\Phi$ with certain additional properties, improving and generalizing some previous estimates for the Hardy-Littlewood maximal operator proved by
Externí odkaz:
http://arxiv.org/abs/1904.00835
We prove mixed weak estimates of Sawyer type for fractional operators. More precisely, let $\mathcal{T}$ be either the maximal fractional function $M_\gamma$ or the fractional integral operator $I_\gamma$, $0<\gamma
Externí odkaz:
http://arxiv.org/abs/1712.08186
We study mixed weak type inequalities for the commutator $[b,T]$, where $b$ is a BMO function and $T$ is a Calder\'on-Zygmund operator. More precisely, we prove that for every $t>0$ \begin{equation*}%\label{tesis_teo2.2} uv(\{x\in\R^n: |\frac{[b,T](f
Externí odkaz:
http://arxiv.org/abs/1704.04953
Autor:
Berra, Fabio1 (AUTHOR) fberra@santafe-conicet.gov.ar, Carena, Marilina1 (AUTHOR), Pradolini, Gladis1 (AUTHOR)
Publikováno v:
Mathematische Nachrichten. Dec2023, Vol. 296 Issue 12, p5786-5788. 3p.
Autor:
Carena, Marilina, Toschi, Marisa
Let $(X,d,\mu)$ be a space of homogeneous type. In this note we study the relationship between two types of $s$-sets: relative to a distance and relative to a measure. We find a condition on a closed subset $F$ of $X$ under which we have that $F$ is
Externí odkaz:
http://arxiv.org/abs/1312.2971
Let $(X,d,\mu)$ be an Ahlfors metric measure space. We give sufficient conditions on a closed set $F\subseteq X$ and on a real number $\beta$ in such a way that $d(x,F)^\beta$ becomes a Muckenhoupt weight. We give also some illustrations to regularit
Externí odkaz:
http://arxiv.org/abs/1306.0893
Publikováno v:
In Journal of Mathematical Analysis and Applications 15 November 2019 479(2):1490-1505
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.