Zobrazeno 1 - 10
of 121
pro vyhledávání: '"Carbone, Lisa A."'
Let $G(\mathbb{Q})$ be a simply connected Chevalley group over $\mathbb{Q}$ corresponding to a simple Lie algebra $\mathfrak g$ over $\mathbb{C}$. Let $V$ be a finite dimensional faithful highest weight $\mathfrak g$-module and let $V_\mathbb{Z}$ be
Externí odkaz:
http://arxiv.org/abs/2408.16895
Let $\mathfrak{g}$ be a symmetrizable Kac--Moody algebra. Given a root $\alpha$ and a real root $\beta$ of $\mathfrak{g}$, it is known that the $\beta$-string through $\alpha$, denoted $R_\alpha(\beta)$, is finite. Given an imaginary root $\beta$, we
Externí odkaz:
http://arxiv.org/abs/2403.01687
The Monster Lie algebra $\frak m $, which admits an action of the Monster finite simple group $\mathbb{M}$, was introduced by Borcherds as part of his work on the Conway--Norton Monstrous Moonshine conjecture. Here we construct an analog~$G(\frak m)$
Externí odkaz:
http://arxiv.org/abs/2311.11078
The Monster Lie algebra $\mathfrak m$ is a quotient of the physical space of the vertex algebra $V=V^\natural\otimes V_{1,1}$, where $V^\natural$ is the Moonshine module vertex operator algebra of Frenkel, Lepowsky, and Meurman, and $V_{1,1}$ is the
Externí odkaz:
http://arxiv.org/abs/2210.16178
Let $A$ be a symmetrizable generalized Cartan matrix with corresponding Kac--Moody algebra $\frak{g}$ over ${\mathbb Q}$. Let $V=V^{\lambda}$ be an integrable highest weight $\frak{g}$-module and let $V_{\mathbb Z}=V^{\lambda}_{\mathbb Z}$ be a ${\ma
Externí odkaz:
http://arxiv.org/abs/2210.01644
Autor:
Carbone, Lisa, Paquette, Natalie M.
Let $\mathbb{M}$ be the Monster finite simple group. We give an interpretation of certain discrete symmetries of a family of heterotic string compactifications to $1 + 1$ dimensions in terms of discrete symmetries of the Monster Lie algebra $\frak m$
Externí odkaz:
http://arxiv.org/abs/2202.09720
Autor:
Ali, Abid, Carbone, Lisa
Let $G$ be an affine or hyperbolic rank 2 Kac--Moody group over a finite field $\mathbb{F}_q$. Let $X=X_{q+1}$ be the Tits building of $G$, the $q+1$--homogeneous tree. Let $\Gamma$ be a nonuniform lattice in $G$. When $\Gamma=P_i^-$, $i=1,2$, the st
Externí odkaz:
http://arxiv.org/abs/2108.02919
Publikováno v:
In Journal of Pure and Applied Algebra July 2024 228(7)
Let $G$ be an infinite-dimensional representation-theoretic Kac--Moody group associated to a nonsingular symmetrizable generalized Cartan matrix. We consider Eisenstein series on $G$ induced from unramified cusp forms on finite-dimensional Levi subgr
Externí odkaz:
http://arxiv.org/abs/2008.11559
Let $G$ be a representation-theoretic Kac--Moody group associated to a nonsingular symmetrizable generalized Cartan matrix. We first consider Kac-Moody analogs of Borel Eisenstein series (induced from quasicharacters on the Borel), and prove they con
Externí odkaz:
http://arxiv.org/abs/2005.13636