Zobrazeno 1 - 10
of 22
pro vyhledávání: '"Caracciolo, Chiara"'
We present an algorithm for the construction of lower dimensional elliptic tori in parametric Hamiltonian systems by means of the parametrization method with the tangent and normal frequencies being prescribed. This requires that the Hamiltonian syst
Externí odkaz:
http://arxiv.org/abs/2405.06432
Publikováno v:
Multi-scale (time and mass) dynamics of space objects, Proceedings IAU Symposium No. 364, 2022, A. Celletti, C. Beaug\'e, C. Gales and A. Lemaitre, eds
We revisit the problem of the existence of KAM tori in extrasolar planetary systems. Specifically, we consider the $\upsilon$ Andromed{\ae} system, by modelling it with a three-body problem. This preliminary study allows us to introduce a natural way
Externí odkaz:
http://arxiv.org/abs/2202.08616
We consider the classical problem of the construction of invariant tori exploiting suitable Hamiltonian normal forms. This kind of approach can be translated by means of the Lie series method into explicit computational algorithms, which are particul
Externí odkaz:
http://arxiv.org/abs/2202.06572
Autor:
Caracciolo, Chiara
Publikováno v:
Mathematics in Engineering, 4(6), 1-40, 2022
We give a proof of the convergence of an algorithm for the construction of lower dimensional elliptic tori in nearly integrable Hamiltonian systems. The existence of such invariant tori is proved by leading the Hamiltonian to a suitable normal form.
Externí odkaz:
http://arxiv.org/abs/2110.09824
Publikováno v:
Monthly Notices of the Royal Astronomical Society, 2021
We study the planetary system of $\upsilon$~Andromed{\ae}, considering the three-body problem formed by the central star and the two largest planets, $\upsilon$~And~\emph{c} and $\upsilon$~And~\emph{d}. We adopt a secular, three-dimensional model and
Externí odkaz:
http://arxiv.org/abs/2108.11834
Autor:
Caracciolo, Chiara, Locatelli, Ugo
Publikováno v:
Journal of Computational Dynamics, 7 (2) : 425-460 (2020)
Birkhoff normal forms are commonly used in order to ensure the so called "effective stability" in the neighborhood of elliptic equilibrium points for Hamiltonian systems. From a theoretical point of view, this means that the eventual diffusion can be
Externí odkaz:
http://arxiv.org/abs/2102.05959
Autor:
Caracciolo, Chiara, Locatelli, Ugo
Publikováno v:
Communications in Nonlinear Science and Numerical Simulation, Volume 97, June 2021
We revisit an algorithm constructing elliptic tori, that was originally designed for applications to planetary hamiltonian systems. The scheme is adapted to properly work with models of chains of $N+1$ particles interacting via anharmonic potentials,
Externí odkaz:
http://arxiv.org/abs/2102.05908
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Locatelli, Ugo1 locatell@mat.uniroma2.it, Caracciolo, Chiara2 chiara.caracciolo@unimi.it, Sansottera, Marco2 marco.sansottera@unimi.it, Volpi, Mara1 volpi@mat.uniroma2.it
Publikováno v:
Proceedings of the International Astronomical Union. Oct2021, Vol. 15 Issue S364, p65-84. 20p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.