Zobrazeno 1 - 10
of 21
pro vyhledávání: '"Capstick, Alexander"'
Large language models (LLMs), trained on diverse data effectively acquire a breadth of information across various domains. However, their computational complexity, cost, and lack of transparency hinder their direct application for specialised tasks.
Externí odkaz:
http://arxiv.org/abs/2411.17284
In Explainable AI, rule extraction translates model knowledge into logical rules, such as IF-THEN statements, crucial for understanding patterns learned by black-box models. This could significantly aid in fields like disease diagnosis, disease progr
Externí odkaz:
http://arxiv.org/abs/2406.17885
Publikováno v:
International Conference on Learning Representations 2024 Workshop on Learning from Time Series For Health
Time-series representation learning is a key area of research for remote healthcare monitoring applications. In this work, we focus on a dataset of recordings of in-home activity from people living with Dementia. We design a representation learning m
Externí odkaz:
http://arxiv.org/abs/2405.04494
Autor:
Huang, Yushan, Zhao, Yuchen, Capstick, Alexander, Palermo, Francesca, Haddadi, Hamed, Barnaghi, Payam
Current methods for pattern analysis in time series mainly rely on statistical features or probabilistic learning and inference methods to identify patterns and trends in the data. Such methods do not generalize well when applied to multivariate, mul
Externí odkaz:
http://arxiv.org/abs/2302.11654
When data is generated by multiple sources, conventional training methods update models assuming equal reliability for each source and do not consider their individual data quality during training. However, in many applications, sources have varied l
Externí odkaz:
http://arxiv.org/abs/2212.02895
Autor:
Palermo, Francesca, Li, Honglin, Capstick, Alexander, Fletcher-Lloyd, Nan, Zhao, Yuchen, Kouchaki, Samaneh, Nilforooshan, Ramin, Sharp, David, Barnaghi, Payam
Agitation is one of the neuropsychiatric symptoms with high prevalence in dementia which can negatively impact the Activities of Daily Living (ADL) and the independence of individuals. Detecting agitation episodes can assist in providing People Livin
Externí odkaz:
http://arxiv.org/abs/2110.09868
Autor:
Huang, Yushan, Zhao, Yuchen, Capstick, Alexander, Palermo, Francesca, Haddadi, Hamed, Barnaghi, Payam
Publikováno v:
In Artificial Intelligence In Medicine April 2024 150
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
When data is streaming from multiple sources, conventional training methods update model weights often assuming the same level of reliability for each source; that is: a model does not consider data quality of each source during training. In many app
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::615766fec757c772833fa133de2cbfc3
http://arxiv.org/abs/2212.02895
http://arxiv.org/abs/2212.02895