Zobrazeno 1 - 10
of 38
pro vyhledávání: '"Caorsi, Matteo"'
Autor:
Shamsaddini, Vahid, Kirveslahti, Henry, Reinauer, Raphael, de Oliveira, Wallyson Lemes, Caorsi, Matteo, Voutaz, Etienne
The goal of this project is to create and study novel techniques to identify early warning signals for socially disruptive events, like riots, wars, or revolutions using only publicly available data on social media. Such techniques need to be robust
Externí odkaz:
http://arxiv.org/abs/2303.05401
One of the main challenges of Topological Data Analysis (TDA) is to extract features from persistent diagrams directly usable by machine learning algorithms. Indeed, persistence diagrams are intrinsically (multi-)sets of points in $\mathbb{R}^2$ and
Externí odkaz:
http://arxiv.org/abs/2112.15210
Autor:
Miolane, Nina, Caorsi, Matteo, Lupo, Umberto, Guerard, Marius, Guigui, Nicolas, Mathe, Johan, Cabanes, Yann, Reise, Wojciech, Davies, Thomas, Leitão, António, Mohapatra, Somesh, Utpala, Saiteja, Shailja, Shailja, Corso, Gabriele, Liu, Guoxi, Iuricich, Federico, Manolache, Andrei, Nistor, Mihaela, Bejan, Matei, Nicolicioiu, Armand Mihai, Luchian, Bogdan-Alexandru, Stupariu, Mihai-Sorin, Michel, Florent, Duc, Khanh Dao, Abdulrahman, Bilal, Beketov, Maxim, Maignant, Elodie, Liu, Zhiyuan, Černý, Marek, Bauw, Martin, Velasco-Forero, Santiago, Angulo, Jesus, Long, Yanan
This paper presents the computational challenge on differential geometry and topology that happened within the ICLR 2021 workshop "Geometric and Topological Representation Learning". The competition asked participants to provide creative contribution
Externí odkaz:
http://arxiv.org/abs/2108.09810
We introduce giotto-ph, a high-performance, open-source software package for the computation of Vietoris-Rips barcodes. giotto-ph is based on Morozov and Nigmetov's lockfree (multicore) implementation of Ulrich Bauer's Ripser package. It also contain
Externí odkaz:
http://arxiv.org/abs/2107.05412
Autor:
Tauzin, Guillaume, Lupo, Umberto, Tunstall, Lewis, Pérez, Julian Burella, Caorsi, Matteo, Reise, Wojciech, Medina-Mardones, Anibal, Dassatti, Alberto, Hess, Kathryn
Publikováno v:
NeurIPS 2020 workshop "Topological Data Analysis and beyond" (https://openreview.net/forum?id=fjQtZJOCTXf); JMLR 22 (https://www.jmlr.org/papers/v22/20-325.html)
We introduce giotto-tda, a Python library that integrates high-performance topological data analysis with machine learning via a scikit-learn-compatible API and state-of-the-art C++ implementations. The library's ability to handle various types of da
Externí odkaz:
http://arxiv.org/abs/2004.02551
Autor:
Caorsi, Matteo, Cecotti, Sergio
Argyres and co-workers started a program to classify all 4d $\mathcal{N}=2$ QFT by classifying Special Geometries with appropriate properties. They completed the program in rank-1. Rank-1 $\mathcal{N}=2$ QFT are equivalently classified by the Mordell
Externí odkaz:
http://arxiv.org/abs/1906.03912
Autor:
Caorsi, Matteo, Cecotti, Sergio
We revisit the classification of rank-1 4d $\mathcal{N}=2$ QFTs in the spirit of Diophantine Geometry, viewing their special geometries as elliptic curves over the chiral ring (a Dedekind domain). The Kodaira-N\'eron model maps the space of non-trivi
Externí odkaz:
http://arxiv.org/abs/1803.00531
Autor:
Caorsi, Matteo, Cecotti, Sergio
The classification of 4d $\mathcal{N}=2$ SCFTs boils down to the classification of conical special geometries with closed Reeb orbits (CSG). Under mild assumptions, one shows that the underlying complex space of a CSG is (birational to) an affine con
Externí odkaz:
http://arxiv.org/abs/1801.04542
Autor:
Caorsi, Matteo, Cecotti, Sergio
We review the categorical approach to the BPS sector of a 4d $\mathcal{N}=2$ QFT, clarifying many tricky issues and presenting a few novel results. To a given $\mathcal{N}=2$ QFT one associates several triangle categories: they describe various kinds
Externí odkaz:
http://arxiv.org/abs/1707.08981
Autor:
Caorsi, Matteo, Cecotti, Sergio
The $S$-duality group $\mathbb{S}(\mathcal{F})$ of a 4d $\mathcal{N}=2$ supersymmetric theory $\mathcal{F}$ is identified with the group of triangle auto-equivalences of its cluster category $\mathscr{C}(\mathcal{F})$ modulo the subgroup acting trivi
Externí odkaz:
http://arxiv.org/abs/1612.08065