Zobrazeno 1 - 10
of 140
pro vyhledávání: '"Cao, Dat"'
Publikováno v:
Qualitative Theory of Dynamical Systems, 2021
We study the precise asymptotic behavior of a non-trivial solution that converges to zero, as time tends to infinity, of dissipative systems of nonlinear ordinary differential equations. The nonlinear term of the equations may not possess a Taylor se
Externí odkaz:
http://arxiv.org/abs/2009.06769
Autor:
Cao, Dat, Hoang, Luan
Publikováno v:
Journal of Evolution Equations, 2020
This paper develops further and systematically the asymptotic expansion theory that was initiated by Foias and Saut in [11]. We study the long-time dynamics of a large class of dissipative systems of nonlinear ordinary differential equations with tim
Externí odkaz:
http://arxiv.org/abs/1911.11077
Autor:
Cao, Dat, Hoang, Luan
We study the long-time dynamics of the Navier-Stokes equations in the three-dimensional periodic domains with a body force decaying in time. We introduce appropriate systems of decaying functions and corresponding asymptotic expansions in those syste
Externí odkaz:
http://arxiv.org/abs/1808.10535
Autor:
Cao, Dat, Hoang, Luan
The Navier-Stokes equations for viscous, incompressible fluids are studied in the three-dimensional periodic domains, with the body force having an asymptotic expansion, when time goes to infinity, in terms of power-decaying functions in a Sobolev-Ge
Externí odkaz:
http://arxiv.org/abs/1803.05502
We investigate the qualitative properties of solution to the Zaremba type problem in unbounded domain for the non-divergence elliptic equation with possible degeneration at infinity. The main result is Phragm\'en-Lindel\"of type principle on growth/d
Externí odkaz:
http://arxiv.org/abs/1801.00741
Global weighted $L^{p}$-estimates are obtained for the gradient of solutions to a class of linear singular, degenerate elliptic Dirichlet boundary value problems over a bounded non-smooth domain. The coefficient matrix is symmetric, nonnegative defin
Externí odkaz:
http://arxiv.org/abs/1612.05583
Autor:
Cao, Dat T., Verbitsky, Igor E.
Publikováno v:
Nonlinear Anal. 146 (2016), 1-19
We study quasilinear elliptic equations of the type $$-\Delta_pu=\sigma \, u^q \quad \text{in} \, \, \, \mathbb{R}^n,$$ where $\Delta_p u=\nabla \cdot(\nabla u |\nabla u|^{p-2})$ is the $p$-Laplacian (or a more general $\mathcal{A}$-Laplace operator
Externí odkaz:
http://arxiv.org/abs/1601.05496
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Indiana University Mathematics Journal, 2018 Jan 01. 67(6), 2225-2277.
Externí odkaz:
https://www.jstor.org/stable/45010363
Autor:
Cao, Dat, Verbitsky, Igor ⁎
Publikováno v:
In Journal of Functional Analysis 1 January 2017 272(1):112-165