Zobrazeno 1 - 10
of 278
pro vyhledávání: '"Canet, L."'
Autor:
Dupuis, N., Canet, L., Eichhorn, A., Metzner, W., Pawlowski, J. M., Tissier, M., Wschebor, N.
Publikováno v:
Physics Reports 910, 1 (2021)
The renormalization group plays an essential role in many areas of physics, both conceptually and as a practical tool to determine the long-distance low-energy properties of many systems on the one hand and on the other hand search for viable ultravi
Externí odkaz:
http://arxiv.org/abs/2006.04853
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Physics Reports 10 May 2021 910:1-114
Autor:
Canet, L., Hilhorst, H. J.
Publikováno v:
J. Stat. Phys. 125, (2006) 513-527
We consider the branching and annihilating random walk $A\to 2A$ and $2A\to 0$ with reaction rates $\sigma$ and $\lambda$, respectively, and hopping rate $D$, and study the phase diagram in the $(\lambda/D,\sigma/D)$ plane. According to standard mean
Externí odkaz:
http://arxiv.org/abs/cond-mat/0605254
Autor:
Canet, L., Moore, M. A.
Publikováno v:
Phys. Rev. Lett. 98 (2007) 200602
We re-examine mode-coupling theory for the Kardar-Parisi-Zhang (KPZ) equation in the strong coupling limit and show that there exists two branches of solutions. One branch (or universality class) only exists for dimensionalities $d
Externí odkaz:
http://arxiv.org/abs/cond-mat/0604301
Publikováno v:
Phys. Rev. Lett. 95, 100601 (2005)
We apply the non-perturbative renormalization group method to a class of out-of-equilibrium phase transitions (usually called ``parity conserving'' or, more properly, ``generalized voter'' class) which is out of the reach of perturbative approaches.
Externí odkaz:
http://arxiv.org/abs/cond-mat/0505170
Autor:
Delamotte, B., Canet, L.
Publikováno v:
Condensed Matter Phys. 8 (2005) 163-179
We point out some limits of the perturbative renormalization group used in statistical mechanics both at and out of equilibrium. We argue that the non perturbative renormalization group formalism is a promising candidate to overcome some of them. We
Externí odkaz:
http://arxiv.org/abs/cond-mat/0412205
Publikováno v:
Phys.Rev.Lett. 92 (2004) 255703
We demonstrate the full power of nonperturbative renormalisation group methods for nonequilibrium situations by calculating the quantitative phase diagrams of simple branching and annihilating random walks and checking these results against careful n
Externí odkaz:
http://arxiv.org/abs/cond-mat/0403423
Publikováno v:
Phys.Rev.B68:064421,2003
On the example of the three-dimensional Ising model, we show that nonperturbative renormalization group equations allow one to obtain very accurate critical exponents. Implementing the order $\partial^4$ of the derivative expansion leads to $\nu=0.63
Externí odkaz:
http://arxiv.org/abs/hep-th/0302227
Publikováno v:
Phys.Rev.D67:065004,2003
We study the optimization of nonperturbative renormalization group equations truncated both in fields and derivatives. On the example of the Ising model in three dimensions, we show that the Principle of Minimal Sensitivity can be unambiguously imple
Externí odkaz:
http://arxiv.org/abs/hep-th/0211055