Zobrazeno 1 - 10
of 67
pro vyhledávání: '"Candido, Leandro"'
Autor:
Candido, Leandro
Using Ostaszewski's $\clubsuit$-principle, we construct a non-metrizable, locally compact, scattered space $L$ in which the operators on the Banach space $C_0(L \times L)$ exhibit a remarkably simple structure. We provide a detailed analysis and, thr
Externí odkaz:
http://arxiv.org/abs/2409.10477
We conjecture that whenever $M$ is a metric space of density at most continuum, then the space of Lipschitz functions is $w^*$-separable. We prove the conjecture for several classes of metric spaces including all the Banach spaces with a projectional
Externí odkaz:
http://arxiv.org/abs/2406.03982
Publikováno v:
Proc. Roy. Soc. Edinburgh Sect. A., online first 2024
We exhibit a new approach to the proofs of the existence of a large family of almost isometric ideals in nonseparable Banach spaces and existence of a large family of almost isometric local retracts in metric spaces. Our approach also implies the exi
Externí odkaz:
http://arxiv.org/abs/2312.07749
Autor:
Candido, Leandro Rosendo
A agricultura de precisão tem agregado alto valor para os agricultores por causa das tecnologias que estão ligadas a ela. Sistemas que extraem informações de imagens digitais são extremamente utilizados para que o agricultor tome decisões a fim
Autor:
Candido, Leandro, Guzmán, Héctor H. T.
Publikováno v:
Proc. Amer. Math. Soc. 151 (2023), 1135-1145
We prove that the Lipschitz-free space over a Banach space $X$ of density $\kappa$, denoted by $\mathcal{F}(X)$, is linearly isomorphic to its $\ell_1$-sum $\left(\bigoplus_{\kappa}\mathcal{F}(X)\right)_{\ell_1}$. This provides an extension of a prev
Externí odkaz:
http://arxiv.org/abs/2202.09932
Autor:
Candido, Leandro
We investigate the geometry of $C(K,X)$ and $\ell_{\infty}(X)$ spaces through complemented subspaces of the form $\left(\bigoplus_{i\in \varGamma}X_i\right)_{c_0}$. Concerning the geometry of $C(K,X)$ spaces we extend some results of D. Alspach and E
Externí odkaz:
http://arxiv.org/abs/2104.07152
Autor:
Candido, Leandro, Kaufmann, Pedro L.
We investigate the problem of classifying the Banach spaces $\mathrm{Lip}_0(C(K))$ for Hausdorff compacta $K$. In particular, sufficient conditions are established for a space $\mathrm{Lip}_0(C(K))$ to be isomorphic to $\mathrm{Lip}_0(c_0(\varGamma))
Externí odkaz:
http://arxiv.org/abs/2010.13098
We prove that, for each Banach space $X$ which is isomorphic to its hyperplanes, the Lipschitz-free spaces over $X$ and over its sphere are isomorphic.
Externí odkaz:
http://arxiv.org/abs/2005.09782
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
J. Funct. Anal., 277 (8) (2019), 2697-2727
We develop tools for proving isomorphisms of normed spaces of Lipschitz functions over various doubling metric spaces and Banach spaces. In particular, we show that $\operatorname{Lip}_0(\mathbb{Z}^d)\simeq\operatorname{Lip}_0(\mathbb{R}^d)$, for all
Externí odkaz:
http://arxiv.org/abs/1809.09957