Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Canaparo Marco"'
Publikováno v:
EPJ Web of Conferences, Vol 245, p 05041 (2020)
Software defect prediction is an activity that aims at narrowing down the most likely defect-prone software modules and helping developers and testers to prioritize inspection and testing. This activity can be addressed by using Machine Learning tech
Externí odkaz:
https://doaj.org/article/6104b0a251e44b9482c1fe0328840757
Autor:
Canaparo Marco, Ronchieri Elisabetta
Publikováno v:
EPJ Web of Conferences, Vol 214, p 05007 (2019)
Software quality monitoring and analysis are among the most productive topics in software engineering research. Their results may be effectively employed by engineers during software development life cycle. Open source software constitutes a valid te
Externí odkaz:
https://doaj.org/article/7c4655fce622463c99ebffa33158eac2
Publikováno v:
In Healthcare Analytics November 2023 3
We report a methodology developed to quantitatively assess the maintainability of Geant4 with respect to software engineering references. The level of maintainability is determined by combining a set of metrics values whose references are documented
Externí odkaz:
http://arxiv.org/abs/1704.05911
The aim of this work is to describe the structure of a web application to support EU-funded INFN projects in the process of time tracking and reporting. The system has been designed in the early 2010s, following the growth of the EU-funded projects a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::23cd3a8abd3c1b0816915a2ebfc51335
Autor:
Canaparo, Marco, Demin, Barbara
L’obiettivo di questo documento è descrivere il lavoro che è stato fatto per dotare il sistema di Gestione delle Presenze del giustificativo “Lavoro Agile”. Il lavoro è iniziato con l’analisi delle specifiche a metà novembre 2019 e una pr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bdbfce243224be421c0dd4f09e72be30
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Computational Science and Its Applications – ICCSA 2020
Background: Defect prediction on unlabelled datasets is a challenging and widespread problem in software engineering. Machine learning is of great value in this context because it provides techniques - called unsupervised - that are applicable to unl
Autor:
Ronchieri, Elisabetta, Canaparo, Marco
Publikováno v:
Health Systems; January 2023, Vol. 12 Issue: 1 p85-97, 13p
Autor:
Doglioni, C., Kim, D., Stewart, G.A., Silvestris, L., Jackson, P., Kamleh, W., Ronchieri, Elisabetta, Canaparo, Marco, Belgiovine, Mauro, Salomoni, Davide, Martelli, Barbara
Publikováno v:
EPJ Web of Conferences; 11/16/2020, Vol. 245, p1-8, 8p