Zobrazeno 1 - 10
of 55
pro vyhledávání: '"Canales de potasio"'
Autor:
J. Alvarez
Publikováno v:
ARS Medica, Vol 15, Iss 2, Pp 48-52 (2017)
Sin resumen
Externí odkaz:
https://doaj.org/article/a641f80f8edf45c8bd41cc80867a03b4
Publikováno v:
Séneca: repositorio Uniandes
Universidad de los Andes
instacron:Universidad de los Andes
Universidad de los Andes
instacron:Universidad de los Andes
Este documento presenta los resultados experimentales más relevantes de la investigación realizada en el Laboratorio de Síntesis Orgánica, Bio y Organocatálisis del Departamento de Química de la Universidad de los Andes bajo la dirección del D
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3056::f4247ba3f0caeeff1322c981502abbba
Autor:
Cova Martín, Ruth del Cristo
La epilepsia es un trastorno neurológico caracterizado por convulsiones o crisis recurrentes no provocadas, desencadenadas por una descarga paroxística anormal y síncrona de una determinada población neuronal. Cerca del 30% de los pacientes son r
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3235::5cd8f948a5b7f84f34321f80dffc6e36
http://riull.ull.es/xmlui/handle/915/26986
http://riull.ull.es/xmlui/handle/915/26986
Autor:
Amador-Munoz, Diana Patricia
Publikováno v:
Vieira-Potter, Victoria J.; Karamichos, Dimitrios; Lee, Darren J. (2016) Ocular Complications of Diabetes and Therapeutic Approaches. En: BioMed Research International. Vol. 2016; 2314-6133; Consultado en: 2018/03/07/16:33:54. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4826913/. Disponible en: 10.1155/2016/3801570.
Yau, Joanne W. Y.; Rogers, Sophie L.; Kawasaki, Ryo; Lamoureux, Ecosse L.; Kowalski, Jonathan W.; Bek, Toke; Chen, Shih-Jen; Dekker, Jacqueline M.; Fletcher, Astrid; Grauslund, Jakob; Haffner, Steven; Hamman, Richard F.; Ikram, M. Kamran; Kayama, Takamasa; Klein, Barbara E. K.; Klein, Ronald; Krishnaiah, Sannapaneni; Mayurasakorn, Korapat; O'Hare, Joseph P.; Orchard, Trevor J.; Porta, Massimo; Rema, Mohan; Roy, Monique S.; Sharma, Tarun; Shaw, Jonathan; Taylor, Hugh; Tielsch, James M.; Varma, Rohit; Wang, Jie Jin; Wang, Ningli; West, Sheila; Xu, Liang; Yasuda, Miho; Zhang, Xinzhi; Mitchell, Paul; Wong, Tien Y.; Meta-Analysis for Eye Disease (META-EYE) Study Group (2012) Global prevalence and major risk factors of diabetic retinopathy. En: Diabetes Care. Vol. 35; No. 3; pp. 556-564; 1935-5548; Disponible en: 10.2337/dc11-1909.
WHO | Diabetes country profiles 2016. En: WHO. Consultado en: 2018/03/07/15:45:37. Disponible en: http://www.who.int/diabetes/country-profiles/en/.
Powers, Alvin C.; Kasper, Dennis; Fauci, Anthony; Hauser, Stephen; Longo, Dan; Jameson, J. Larry; Loscalzo, Joseph (2015) Diabetes Mellitus: Diagnosis, Classification, and Pathophysiology. En: Harrison's Principles of Internal Medicine. New York, NY: McGraw-Hill Education; Consultado en: 2018/03/07/15:41:21. Disponible en: accessmedicine.mhmedical.com/content.aspx?aid=1120816080.
International Diabetes Federation (2019) IDF Diabetes Atlas. Brussels, Belgium: International Diabetes Federation; Consultado en: 2020/11/03/14:20:44. Disponible en: https://www.diabetesatlas.org/upload/resources/material/20200302_133351_IDFATLAS9e-final-web.pdf.
Liang, Chun-Chi; Park, Ann Y.; Guan, Jun-Lin (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. En: Nature Protocols. Vol. 2; No. 2; pp. 329-333; 1750-2799; Disponible en: 10.1038/nprot.2007.30.
Srinivas, S. P.; Yeh, J. C.; Ong, A.; Bonanno, J. A. (1998) Ca2+ mobilization in bovine corneal endothelial cells by P2 purinergic receptors. En: Current Eye Research. Vol. 17; No. 10; pp. 994-1004; 0271-3683
Hatou, Shin; Yamada, Masakazu; Mochizuki, Hiroshi; Shiraishi, Atsushi; Joko, Takeshi; Nishida, Teruo (2009) The effects of dexamethasone on the Na,K-ATPase activity and pump function of corneal endothelial cells. En: Current Eye Research. Vol. 34; No. 5; pp. 347-354; 1460-2202; Disponible en: 10.1080/02713680902829624.
Srinivas, Sangly P. (2012) Cell Signaling in Regulation of the Barrier Integrity of the Corneal Endothelium. En: Experimental Eye Research. Vol. 95; No. 1; pp. 8-15; 0014-4835; Consultado en: 2018/03/13/17:08:09. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3271188/. Disponible en: 10.1016/j.exer.2011.09.009.
Mergler, Stefan; Pleyer, Uwe (2007) The human corneal endothelium: new insights into electrophysiology and ion channels. En: Progress in Retinal and Eye Research. Vol. 26; No. 4; pp. 359-378; 1350-9462; Disponible en: 10.1016/j.preteyeres.2007.02.001.
El-Agamy, Amira; Alsubaie, Shams (2017) Corneal endothelium and central corneal thickness changes in type 2 diabetes mellitus. En: Clinical Ophthalmology (Auckland, N.Z.). Vol. 11; pp. 481-486; 1177-5467; Disponible en: 10.2147/OPTH.S126217.
Sudhir, Rachapalle R.; Raman, Rajiv; Sharma, Tarun (2012) Changes in the corneal endothelial cell density and morphology in patients with type 2 diabetes mellitus: a population-based study, Sankara Nethralaya Diabetic Retinopathy and Molecular Genetics Study (SN-DREAMS, Report 23). En: Cornea. Vol. 31; No. 10; pp. 1119-1122; 1536-4798; Disponible en: 10.1097/ICO.0b013e31823f8e00.
Ljubimov, Alexander V. (2017) Diabetic complications in the cornea. En: Vision Research. Diabetic Retinopathy; Vol. 139; pp. 138-152; 0042-6989; Consultado en: 2018/03/13/16:51:28. Disponible en: http://www.sciencedirect.com/science/article/pii/S0042698917300470. Disponible en: 10.1016/j.visres.2017.03.002.
Riazuddin, S. Amer; Parker, David S.; McGlumphy, Elyse J.; Oh, Edwin C.; Iliff, Benjamin W.; Schmedt, Thore; Jurkunas, Ula; Schleif, Robert; Katsanis, Nicholas; Gottsch, John D. (2012) Mutations in LOXHD1, a recessive-deafness locus, cause dominant late-onset Fuchs corneal dystrophy. En: American Journal of Human Genetics. Vol. 90; No. 3; pp. 533-539; 1537-6605; Disponible en: 10.1016/j.ajhg.2012.01.013.
Loganathan, Sampath K.; Schneider, Hans-Peter; Morgan, Patricio E.; Deitmer, Joachim W.; Casey, Joseph R. (2016) Functional assessment of SLC4A11, an integral membrane protein mutated in corneal dystrophies. En: American Journal of Physiology-Cell Physiology. Vol. 311; No. 5; pp. C735-C748; 0363-6143; Consultado en: 2018/03/13/16:43:25. Disponible en: https://www.physiology.org/doi/abs/10.1152/ajpcell.00078.2016. Disponible en: 10.1152/ajpcell.00078.2016.
Hopfer, Ulrike; Fukai, Naomi; Hopfer, Helmut; Wolf, Gunter; Joyce, Nancy; Li, En; Olsen, Bjorn R. (2005) Targeted disruption of Col8a1 and Col8a2 genes in mice leads to anterior segment abnormalities in the eye. En: FASEB journal: official publication of the Federation of American Societies for Experimental Biology. Vol. 19; No. 10; pp. 1232-1244; 1530-6860; Disponible en: 10.1096/fj.04-3019com.
Jurkunas, Ula V.; Bitar, Maya S.; Funaki, Toshinari; Azizi, Behrooz (2010) Evidence of oxidative stress in the pathogenesis of fuchs endothelial corneal dystrophy. En: The American Journal of Pathology. Vol. 177; No. 5; pp. 2278-2289; 1525-2191; Disponible en: 10.2353/ajpath.2010.100279.
Jurkunas, Ula V.; Rawe, Ian; Bitar, Maya S.; Zhu, Cheng; Harris, Deshea L.; Colby, Kathryn; Joyce, Nancy C. (2008) Decreased expression of peroxiredoxins in Fuchs' endothelial dystrophy. En: Investigative Ophthalmology & Visual Science. Vol. 49; No. 7; pp. 2956-2963; 1552-5783; Disponible en: 10.1167/iovs.07-1529.
Baratz, Keith H.; Tosakulwong, Nirubol; Ryu, Euijung; Brown, William L.; Branham, Kari; Chen, Wei; Tran, Khoa D.; Schmid-Kubista, Katharina E.; Heckenlively, John R.; Swaroop, Anand; Abecasis, Goncalo; Bailey, Kent R.; Edwards, Albert O. (2010) E2-2 protein and Fuchs's corneal dystrophy. En: The New England Journal of Medicine. Vol. 363; No. 11; pp. 1016-1024; 1533-4406; Disponible en: 10.1056/NEJMoa1007064.
Kim, Eun Chul; Toyono, Tetsuya; Berlinicke, Cynthia A.; Zack, Donald J.; Jurkunas, Ula; Usui, Tomohiko; Jun, Albert S. (2017) Screening and Characterization of Drugs That Protect Corneal Endothelial Cells Against Unfolded Protein Response and Oxidative Stress. En: Investigative Ophthalmology & Visual Science. Vol. 58; No. 2; pp. 892-900; 0146-0404; Consultado en: 2018/03/13/16:30:52. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5295784/. Disponible en: 10.1167/iovs.16-20147.
Vedana, Gustavo; Villarreal, Guadalupe; Jun, Albert S (2016) Fuchs endothelial corneal dystrophy: current perspectives. En: Clinical Ophthalmology (Auckland, N.Z.). Vol. 10; pp. 321-330; 1177-5467; Consultado en: 2018/03/13/16:29:26. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4762439/. Disponible en: 10.2147/OPTH.S83467.
Xia, Dan; Zhang, Shuai; Nielsen, Esben; Ivarsen, Anders Ramløv; Liang, Chunyong; Li, Qiang; Thomsen, Karen; Hjortdal, Jesper Østergaard; Dong, Mingdong (2016) The Ultrastructures and Mechanical Properties of the Descement’s Membrane in Fuchs Endothelial Corneal Dystrophy. En: Scientific Reports. Vol. 6; pp. 23096 2045-2322; Consultado en: 2018/03/13/16:27:02. Disponible en: https://www.nature.com/articles/srep23096. Disponible en: 10.1038/srep23096.
Shenoy, Radha; Khandekar, Rajeev; Bialasiewicz, Alexander; Al Muniri, Abdullah (2009) Corneal endothelium in patients with diabetes mellitus: a historical cohort study. En: European Journal of Ophthalmology. Vol. 19; No. 3; pp. 369-375; 1120-6721
Larsson, L. I.; Bourne, W. M.; Pach, J. M.; Brubaker, R. F. (1996) Structure and function of the corneal endothelium in diabetes mellitus type I and type II. En: Archives of Ophthalmology (Chicago, Ill.: 1960). Vol. 114; No. 1; pp. 9-14; 0003-9950
Takahashi, Hiroshi; Akiba, Kiyoshi; Noguchi, Takayasu; Ohmura, Takeo; Takahashi, Ryoki; Ezure, Youji; Ohara, Kunitoshi; Zieske, James D. (2000) Matrix metalloproteinase activity is enhanced during corneal wound repair in high glucose condition. En: Current Eye Research. Vol. 21; No. 2; pp. 608-615; 0271-3683; Consultado en: 2018/03/13/11:27:30. Disponible en: https://www.tandfonline.com/doi/abs/10.1076/0271-3683%28200008%292121-VFT608. Disponible en: 10.1076/0271-3683(200008)2121-VFT608.
Matsuda, Mamoru; Awata, Takashi; Ohashi, Yuichi; Inaba, Masamaru; Fukuda, Masakatsu; Manabe, Reizo (1987) The effects of aldose reductase inhibitor on the corneal endothelial morphology in diabetic rats. En: Current Eye Research. Vol. 6; No. 2; pp. 391-397; 0271-3683; Consultado en: 2018/03/13/11:25:01. Disponible en: https://doi.org/10.3109/02713688709025192. Disponible en: 10.3109/02713688709025192.
Srivastava, Satish K; Yadav, Umesh C S; Reddy, Aramati BM; Saxena, Ashish; Tammali, Ravinder; Mohammad, Shoeb; Ansari, Naseem H; Bhatnagar, Aruni; Petrash, Mark J; Srivastava, Sanjay; Ramana, Kota V (2011) Aldose Reductase Inhibition Suppresses Oxidative Stress-Induced Inflammatory Disorders. En: Chemico-biological interactions. Vol. 191; No. 1-3; pp. 330-338; 0009-2797; Consultado en: 2018/03/13/11:23:25. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3103634/. Disponible en: 10.1016/j.cbi.2011.02.023.
Hasan, S. Akbar (2010) The Cornea in Diabetes Mellitus. En: Diabetic Retinopathy. pp. 347-355; Springer, New York, NY; 978-0-387-85899-9 978-0-387-85900-2; Consultado en: 2018/03/13/11:21:29. Disponible en: https://link.springer.com/chapter/10.1007/978-0-387-85900-2_12.
Sagoo, Pervinder; Chan, Giulia; Larkin, Daniel F. P.; George, Andrew J. T. (2004) Inflammatory cytokines induce apoptosis of corneal endothelium through nitric oxide. En: Investigative Ophthalmology & Visual Science. Vol. 45; No. 11; pp. 3964-3973; 0146-0404; Disponible en: 10.1167/iovs.04-0439.
Apoptosis in the Endothelium of Human Corneas for Transplantation | IOVS | ARVO Journals. Consultado en: 2018/03/13/10:56:53. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2123710.
Haeberlein, S. L. (2004) Mitochondrial function in apoptotic neuronal cell death. En: Neurochemical research. Vol. 29; No. 3; pp. 521-530; 0364-3190; Consultado en: 2018/03/13/10:52:41. Disponible en: http://europepmc.org/abstract/med/15038600. Disponible en: 10.1023/B:NERE.0000014823.74782.b7.
Umapathy, Ankita; Donaldson, Paul; Lim, Julie (2013) Antioxidant Delivery Pathways in the Anterior Eye. En: BioMed Research International. Consultado en: 2018/03/13/10:44:40. Disponible en: https://www.hindawi.com/journals/bmri/2013/207250/.
Diecke, Friedrich P. J.; Ma, Li; Iserovich, Pavel; Fischbarg, Jorge (2007) Corneal endothelium transports fluid in the absence of net solute transport. En: Biochimica et Biophysica Acta (BBA). Vol. 1768; No. 9; pp. 2043-2048; 0005-2736; Consultado en: 2018/03/13/09:24:30. Disponible en: http://www.sciencedirect.com/science/article/pii/S0005273607001800. Disponible en: 10.1016/j.bbamem.2007.05.020.
Cuadrado Escamilla, José Luis (2009) Estudio anatomo-clínico y epidemiológico de la queratitis laminar difusa como complicación postquirúrgica de la fotoqueratomileusis (lasik). Valencia: Universitat de València, Servei de Publicacions
Hu, Rebecca G.; Zhu, Yuan; Donaldson, Paul; Kalloniatis, Michael (2012) Alterations of Glutamate, Glutamine, and Related Amino Acids in the Anterior Eye Secondary to Ischaemia and Reperfusion. En: Current Eye Research. Vol. 37; No. 7; pp. 633-643; 0271-3683; Consultado en: 2018/03/13/09:09:11. Disponible en: https://doi.org/10.3109/02713683.2012.669509. Disponible en: 10.3109/02713683.2012.669509.
Mergler, Stefan; Pleyer, Uwe; Reinach, Peter; Bednarz, Jürgen; Dannowski, Haike; Engelmann, Katrin; Hartmann, Christian; Yousif, Tarik (2005) EGF suppresses hydrogen peroxide induced Ca2+ influx by inhibiting L-type channel activity in cultured human corneal endothelial cells. En: Experimental Eye Research. Vol. 80; No. 2; pp. 285-293; 0014-4835; Disponible en: 10.1016/j.exer.2004.09.012.
Zhang, Wenlin; Li, Hongde; Ogando, Diego G.; Li, Shimin; Feng, Matthew; Price, Francis W.; Tennessen, Jason M.; Bonanno, Joseph A. (2017) Glutaminolysis is Essential for Energy Production and Ion Transport in Human Corneal Endothelium. En: EBioMedicine. Vol. 16; pp. 292-301; 2352-3964; Disponible en: 10.1016/j.ebiom.2017.01.004.
Harvitt, D. M.; Bonanno, J. A. (1998) Oxygen consumption of the rabbit cornea. En: Investigative Ophthalmology & Visual Science. Vol. 39; No. 2; pp. 444-448; 1552-5783; Consultado en: 2018/03/13/08:47:43. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2181302.
Wojcik, Katarzyna A.; Kaminska, Anna; Blasiak, Janusz; Szaflik, Jerzy; Szaflik, Jacek P. (2013) Oxidative Stress in the Pathogenesis of Keratoconus and Fuchs Endothelial Corneal Dystrophy. En: International Journal of Molecular Sciences. Vol. 14; No. 9; pp. 19294-19308; 1422-0067; Consultado en: 2018/03/13/04:51:53. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3794834/. Disponible en: 10.3390/ijms140919294.
Bourne, W. M. (2003) Biology of the corneal endothelium in health and disease. En: Eye (London, England). Vol. 17; No. 8; pp. 912-918; 0950-222X; Disponible en: 10.1038/sj.eye.6700559.
Lázaro, C. García; Castillo, A. Gómez; García, J. Feijóo; Macías, JM Benítez; García, J. Sánchez (2000) [Study of the corneal endothelium after glaucoma surgery]. En: Archivos de la Sociedad Espanola de Oftalmologia. Vol. 75; No. 2; pp. 75-80; 0365-6691; Consultado en: 2018/03/13/02:12:49. Disponible en: http://europepmc.org/abstract/med/11151123.
Murano, Nao; Ishizaki, Masamichi; Sato, Shigeru; Fukuda, Yuh; Takahashi, Hiroshi (2008) Corneal endothelial cell damage by free radicals associated with ultrasound oscillation. En: Archives of Ophthalmology (Chicago, Ill.: 1960). Vol. 126; No. 6; pp. 816-821; 1538-3601; Disponible en: 10.1001/archopht.126.6.816.
Bonanno, Joseph A. (2003) Identity and regulation of ion transport mechanisms in the corneal endothelium. En: Progress in Retinal and Eye Research. Vol. 22; No. 1; pp. 69-94; 1350-9462
Remington, Lee Ann (2011) Clinical Anatomy of the Visual System E-Book. pp. 303 : Elsevier Health Sciences; 978-1-4557-2777-3
Wörner, Carlos H.; Olguín, Alicia; Ruíz-García, José L.; Garzón-Jiménez, Nuria (2011) Cell Pattern in Adult Human Corneal Endothelium. En: PLOS ONE. Vol. 6; No. 5; pp. e19483 1932-6203; Consultado en: 2018/03/11/16:58:12. Disponible en: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0019483. Disponible en: 10.1371/journal.pone.0019483.
Liesegang, Thomas J. (2002) Physiologic changes of the cornea with contact lens wear. En: The CLAO journal: official publication of the Contact Lens Association of Ophthalmologists, Inc. Vol. 28; No. 1; pp. 12-27; 0733-8902
Standring, Susan (2016) Gray's anatomy : the anatomical basis of clinical practice. United States: New York : Elsevier Limited; 9780702052309 (main edition) 9780702063060 (international edition paperback) 9780702068515 (PDF, EPUB) 9780702068522 (Inkling interactive ebook)
Chen, Edwin S.; Terry, Mark A.; Shamie, Neda; Hoar, Karen L.; Friend, Daniel J. (2008) Descemet-stripping automated endothelial keratoplasty: six-month results in a prospective study of 100 eyes. En: Cornea. Vol. 27; No. 5; pp. 514-520; 1536-4798; Disponible en: 10.1097/ICO.0b013e3181611c50.
Murphy, C.; Alvarado, J.; Juster, R.; Maglio, M. (1984) Prenatal and postnatal cellularity of the human corneal endothelium. A quantitative histologic study. En: Investigative Ophthalmology & Visual Science. Vol. 25; No. 3; pp. 312-322; 0146-0404
Li, Q. J.; Ashraf, M. F.; Shen, D. F.; Green, W. R.; Stark, W. J.; Chan, C. C.; O'Brien, T. P. (2001) The role of apoptosis in the pathogenesis of Fuchs endothelial dystrophy of the cornea. En: Archives of Ophthalmology (Chicago, Ill.: 1960). Vol. 119; No. 11; pp. 1597-1604; 0003-9950
Módis, László; Szalai, Eszter; Kertész, Katalin; Kemény-Beke, Adám; Kettesy, Beáta; Berta, András (2010) Evaluation of the corneal endothelium in patients with diabetes mellitus type I and II. En: Histology and Histopathology. Vol. 25; No. 12; pp. 1531-1537; 1699-5848; Disponible en: 10.14670/HH-25.1531.
Ljubimov, Alexander V.; Saghizadeh, Mehrnoosh (2015) Progress in corneal wound healing. En: Progress in Retinal and Eye Research. Vol. 49; pp. 17-45; 1873-1635; Disponible en: 10.1016/j.preteyeres.2015.07.002.
Skarbez, Kathryn; Priestley, Yos; Hoepf, Marcia; Koevary, Steven B. (2010) Comprehensive Review of the Effects of Diabetes on Ocular Health. En: Expert review of ophthalmology. Vol. 5; No. 4; pp. 557-577; 1746-9899; Consultado en: 2018/03/07/16:34:08. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3134329/. Disponible en: 10.1586/eop.10.44.
Kampik, D.; Ali, R. R.; Larkin, D. F. P. (2012) Experimental gene transfer to the corneal endothelium. En: Experimental Eye Research. Vol. 95; No. 1; pp. 54-59; 1096-0007; Disponible en: 10.1016/j.exer.2011.07.001.
Lwigale, Peter Y.; Bronner-Fraser, Marianne (2009) Semaphorin3A/neuropilin-1 signaling acts as a molecular switch regulating neural crest migration during cornea development. En: Developmental biology. Vol. 336; No. 2; pp. 257-265; 0012-1606; Consultado en: 2018/04/12/12:59:21. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2800376/. Disponible en: 10.1016/j.ydbio.2009.10.008.
Zieske, James D. (2004) Corneal development associated with eyelid opening. En: International Journal of Developmental Biology. Vol. 48; No. 8-9; pp. 903-911; 0214-6282, 1696-3547; Consultado en: 2018/04/12/12:46:08. Disponible en: http://www.ijdb.ehu.es/web/paper/041860jz. Disponible en: 10.1387/ijdb.041860jz.
Voltage-dependent calcium channel, L-type, alpha-1 subunit (IPR005446) < InterPro < EMBL-EBI. Consultado en: 2018/05/29/13:18:43. Disponible en: http://www.ebi.ac.uk/interpro/entry/IPR005446.
Kurtenbach, Sarah; Kurtenbach, Stefan; Zoidl, Georg (2014) Emerging functions of pannexin 1 in the eye. En: Frontiers in Cellular Neuroscience. Vol. 8; 1662-5102; Consultado en: 2018/05/29/05:00:47. Disponible en: https://www.frontiersin.org/articles/10.3389/fncel.2014.00263/full. Disponible en: 10.3389/fncel.2014.00263.
Anumanthan, Govindaraj; Gupta, Suneel; Fink, Michael K.; Hesemann, Nathan P.; Bowles, Douglas K.; McDaniel, Lindsey M.; Muhammad, Maaz; Mohan, Rajiv R. (2018) KCa3.1 ion channel: A novel therapeutic target for corneal fibrosis. En: PloS One. Vol. 13; No. 3; pp. e0192145 1932-6203; Disponible en: 10.1371/journal.pone.0192145.
Nguyen, Tracy T.; Bonanno, Joseph A. (2012) Lactate-H+ Transport Is a Significant Component of the In Vivo Corneal Endothelial Pump. En: Investigative Ophthalmology & Visual Science. Vol. 53; No. 4; pp. 2020-2029; 1552-5783; Consultado en: 2018/05/29/02:25:41. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2188361. Disponible en: 10.1167/iovs.12-9475.
Nguyen, Tracy T.; Bonanno, Joseph A. (2012) Lactate-H+ Transport Is a Significant Component of the In Vivo Corneal Endothelial Pump. En: Investigative Ophthalmology & Visual Science. Vol. 53; No. 4; pp. 2020-2029; 0146-0404; Consultado en: 2018/05/29/02:25:13. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3995573/. Disponible en: 10.1167/iovs.12-9475.
Watsky, M. A.; Cooper, K.; Rae, J. L. (1992) Transient outwardly rectifying potassium channel in the rabbit corneal endothelium. En: The Journal of Membrane Biology. Vol. 128; No. 2; pp. 123-132; 0022-2631
Yang, Dongli; MacCallum, Donald K.; Ernst, Stephen A.; Hughes, Bret A. (2003) Expression of the Inwardly Rectifying K+ Channel Kir2.1 in Native Bovine Corneal Endothelial Cells. En: Investigative Ophthalmology & Visual Science. Vol. 44; No. 8; pp. 3511-3519; 1552-5783; Consultado en: 2018/05/28/15:10:58. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2200243. Disponible en: 10.1167/iovs.02-1306.
Kew, James N. C.; Davies, Ceri H. (2010) Ion Channels: From Structure to Function. pp. 586 : Oxford University Press; 978-0-19-929675-0
Fluid transport by the cornea endothelium is dependent on buffering lactic acid efflux | American Journal of Physiology-Cell Physiology. Consultado en: 2018/05/28/03:18:04. Disponible en: https://www.physiology.org/doi/abs/10.1152/ajpcell.00095.2016?url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org&rfr_dat=cr_pub%3Dpubmed.
Lactate-H+ Transport Is a Significant Component of the In Vivo Corneal Endothelial Pump. Consultado en: 2018/05/28/02:21:01. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3995573/.
Huang, Hai; Pugsley, Michael K.; Fermini, Bernard; Curtis, Michael J.; Koerner, John; Accardi, Michael; Authier, Simon (2017) Cardiac voltage-gated ion channels in safety pharmacology: Review of the landscape leading to the CiPA initiative. En: Journal of Pharmacological and Toxicological Methods. Focused Issue on Safety Pharmacology; Vol. 87; pp. 11-23; 1056-8719; Consultado en: 2018/05/27/16:08:52. Disponible en: http://www.sciencedirect.com/science/article/pii/S1056871917300825. Disponible en: 10.1016/j.vascn.2017.04.002.
Wulff, Heike; Castle, Neil A.; Pardo, Luis A. (2009) Voltage-gated potassium channels as therapeutic targets. En: Nature Reviews. Drug Discovery. Vol. 8; No. 12; pp. 982-1001; 1474-1784; Disponible en: 10.1038/nrd2983.
Rae, J. L.; Shepard, A. R. (2000) Kv3.3 potassium channels in lens epithelium and corneal endothelium. En: Experimental Eye Research. Vol. 70; No. 3; pp. 339-348; 0014-4835; Disponible en: 10.1006/exer.1999.0796.
Rudy, B.; Maffie, J.; Amarillo, Y.; Clark, B.; Goldberg, E. M.; Jeong, H.-Y.; Kruglikov, I.; Kwon, E.; Nadal, M.; Zagha, E.; Squire, Larry R. (2009) Voltage Gated Potassium Channels: Structure and Function of Kv1 to Kv9 Subfamilies. En: Encyclopedia of Neuroscience. pp. 397-425; Oxford: Academic Press; 978-0-08-045046-9; Consultado en: 2018/05/27/04:00:30. Disponible en: https://www.sciencedirect.com/science/article/pii/B9780080450469016302.
Voltage-gated potassium channels | Introduction | BPS/IUPHAR Guide to PHARMACOLOGY. Consultado en: 2018/05/25/13:47:52. Disponible en: http://www.guidetopharmacology.org/GRAC/FamilyIntroductionForward?familyId=81.
Grizel, A. V.; Glukhov, G. S.; Sokolova, O. S. (2014) Mechanisms of Activation of Voltage-Gated Potassium Channels. En: Acta Naturae. Vol. 6; No. 4; pp. 10-26; 2075-8251; Consultado en: 2018/05/24/19:53:18. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4273088/.
Joyce, Nancy C.; Harris, Deshea L. (2010) Decreasing expression of the G1-phase inhibitors, p21Cip1 and p16INK4a, promotes division of corneal endothelial cells from older donors. En: Molecular Vision. Vol. 16; pp. 897-906; 1090-0535
Rae, J. L.; Watsky, M. A. (1996) Ionic channels in corneal endothelium. En: The American Journal of Physiology. Vol. 270; No. 4 Pt 1; pp. C975-989; 0002-9513; Disponible en: 10.1152/ajpcell.1996.270.4.C975.
Yu, Frank H; Catterall, William A (2003) Overview of the voltage-gated sodium channel family. En: Genome Biology. Vol. 4; No. 3; pp. 207 1465-6906; Consultado en: 2018/05/21/13:23:31. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC153452/.
Chhabra, Mahendra; Prausnitz, John M.; Radke, Clayton J. (2009) Modeling corneal metabolism and oxygen transport during contact lens wear. En: Optometry and Vision Science: Official Publication of the American Academy of Optometry. Vol. 86; No. 5; pp. 454-466; 1538-9235; Disponible en: 10.1097/OPX.0b013e31819f9e70.
Li, Shimin; Allen, Kah Tan; Bonanno, Joseph A. (2011) Soluble adenylyl cyclase mediates bicarbonate-dependent corneal endothelial cell protection. En: American Journal of Physiology. Cell Physiology. Vol. 300; No. 2; pp. C368-374; 1522-1563; Disponible en: 10.1152/ajpcell.00314.2010.
Sun, Xing Cai; Zhai, Chang-Bin; Cui, Miao; Chen, Yanqiu; Levin, Lonny R.; Buck, Jochen; Bonanno, Joseph A. (2003) HCO(3)(-)-dependent soluble adenylyl cyclase activates cystic fibrosis transmembrane conductance regulator in corneal endothelium. En: American Journal of Physiology. Cell Physiology. Vol. 284; No. 5; pp. C1114-1122; 0363-6143; Disponible en: 10.1152/ajpcell.00400.2002.
Rauz, Saaeha; Walker, Elizabeth A.; Murray, Philip I.; Stewart, Paul M. (2003) Expression and distribution of the serum and glucocorticoid regulated kinase and the epithelial sodium channel subunits in the human cornea. En: Experimental Eye Research. Vol. 77; No. 1; pp. 101-108; 0014-4835
Sánchez, J. M.; Li, Y.; Rubashkin, A.; Iserovich, P.; Wen, Q.; Ruberti, J. W.; Smith, R. W.; Rittenband, D.; Kuang, K.; Diecke, F. P. J.; Fischbarg, J. (2002) Evidence for a central role for electro-osmosis in fluid transport by corneal endothelium. En: The Journal of Membrane Biology. Vol. 187; No. 1; pp. 37-50; 0022-2631; Disponible en: 10.1007/s00232-001-0151-9.
Fischbarg, Jorge (2010) Fluid Transport Across Leaky Epithelia: Central Role of the Tight Junction and Supporting Role of Aquaporins. En: Physiological Reviews. Vol. 90; No. 4; pp. 1271-1290; 0031-9333; Consultado en: 2018/05/17/20:38:47. Disponible en: https://www.physiology.org/doi/abs/10.1152/physrev.00025.2009. Disponible en: 10.1152/physrev.00025.2009.
Riley, M. V.; Winkler, B. S.; Starnes, C. A.; Peters, M. I. (1997) Fluid and ion transport in corneal endothelium: insensitivity to modulators of Na(+)-K(+)-2Cl-cotransport. En: The American Journal of Physiology. Vol. 273; No. 5 Pt 1; pp. C1480-1486; 0002-9513
Diecke, Friedrich P.; Wen, Quan; Iserovich, Pavel; Li, Jianfeng; Kuang, Kunyan; Fischbarg, Jorge (2005) Regulation of Na-K-2Cl cotransport in cultured bovine corneal endothelial cells. En: Experimental Eye Research. Vol. 80; No. 6; pp. 777-785; 0014-4835; Disponible en: 10.1016/j.exer.2004.12.008.
Watsky, M. A.; Rae, J. L. (1991) Resting voltage measurements of the rabbit corneal endothelium using patch-current clamp techniques. En: Investigative Ophthalmology & Visual Science. Vol. 32; No. 1; pp. 106-111; 0146-0404
Zhang, Wenlin; Ogando, Diego G.; Bonanno, Joseph A.; Obukhov, Alexander G. (2015) Human SLC4A11 Is a Novel NH3/H+ Co-transporter. En: The Journal of Biological Chemistry. Vol. 290; No. 27; pp. 16894-16905; 1083-351X; Disponible en: 10.1074/jbc.M114.627455.
Bonanno, Joseph A. (2012) Molecular Mechanisms Underlying the Corneal Endothelial Pump. En: Experimental Eye Research. Vol. 95; No. 1; pp. 2-7; 0014-4835; Consultado en: 2018/05/09/04:12:43. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3199349/. Disponible en: 10.1016/j.exer.2011.06.004.
Redbrake, C.; Salla, S.; Frantz, A.; Reim, M. (1999) Metabolic changes of the human donor cornea during organ-culture. En: Acta Ophthalmologica Scandinavica. Vol. 77; No. 3; pp. 266-272; 1395-3907
Reim, M.; Lax, F.; Lichte, H.; Turss, R. (1967) Steady State Levels of Glucose in the Different Layers of the Cornea, Aqueous Humor, Blood and Tears in vivo. En: Ophthalmologica. Vol. 154; No. 1; pp. 39-50; 0030-3755, 1423-0267; Consultado en: 2018/05/08/20:19:19. Disponible en: https://www.karger.com/Article/FullText/305147. Disponible en: 10.1159/000305147.
Kumagai, A. K.; Glasgow, B. J.; Pardridge, W. M. (1994) GLUT1 glucose transporter expression in the diabetic and nondiabetic human eye. En: Investigative Ophthalmology & Visual Science. Vol. 35; No. 6; pp. 2887-2894; 0146-0404
Verkman, AS (2002) Aquaporin water channels and endothelial cell function. En: Journal of Anatomy. Vol. 200; No. 6; pp. 617-627; 0021-8782; Consultado en: 2018/05/08/19:17:26. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1570747/. Disponible en: 10.1046/j.1469-7580.2002.00058.x.
Kuang, Kunyan; Yiming, Maimaiti; Wen, Quan; Li, Yansui; Ma, Li; Iserovich, Pavel; Verkman, A. S.; Fischbarg, Jorge (2004) Fluid transport across cultured layers of corneal endothelium from aquaporin-1 null mice. En: Experimental Eye Research. Vol. 78; No. 4; pp. 791-798; 0014-4835; Disponible en: 10.1016/j.exer.2003.11.017.
Mendez, M. G.; Restle, D.; Janmey, P. A. (2014) Vimentin enhances cell elastic behavior and protects against compressive stress. En: Biophysical Journal. Vol. 107; No. 2; pp. 314-323; 1542-0086; Disponible en: 10.1016/j.bpj.2014.04.050.
He, Zhiguo; Forest, Fabien; Gain, Philippe; Rageade, Damien; Bernard, Aurélien; Acquart, Sophie; Peoc’h, Michel; Defoe, Dennis M.; Thuret, Gilles (2016) 3D map of the human corneal endothelial cell. En: Scientific Reports. Vol. 6; pp. 29047 2045-2322; Consultado en: 2018/05/07/18:57:20. Disponible en: https://www.nature.com/articles/srep29047. Disponible en: 10.1038/srep29047.
Hejtmancik, J. Fielding; Nickerson, John M. (2015) Molecular Biology of Eye Disease. pp. 573 : Academic Press; 978-0-12-801267-3
Forrester, John V.; Dick, Andrew D.; McMenamin, Paul G.; Roberts, Fiona; Pearlman, Eric (2016) Chapter 1. En: The Eye (Fourth Edition). pp. 1-102.e2; W.B. Saunders; 978-0-7020-5554-6; Consultado en: 2018/05/03/02:38:01. Disponible en: https://www.sciencedirect.com/science/article/pii/B9780702055546000010.
Chang, Hui; Ma, Yu-Guang; Wang, Yun-Ying; Song, Zhen; Li, Quan; Yang, Ning; Zhao, Hua-Zhou; Feng, Han-Zhong; Chang, Yao-Ming; Ma, Jin; Yu, Zhi-Bin; Xie, Man-Jiang (2011) High glucose alters apoptosis and proliferation in HEK293 cells by inhibition of cloned BKCa channel. En: Journal of Cellular Physiology. Vol. 226; No. 6; pp. 1660-1675; 1097-4652; Consultado en: 2018/05/03/02:07:35. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1002/jcp.22497. Disponible en: 10.1002/jcp.22497.
Stepp, Mary Ann (2006) Corneal integrins and their functions. En: Experimental Eye Research. Vol. 83; No. 1; pp. 3-15; 0014-4835; Disponible en: 10.1016/j.exer.2006.01.010.
Fernández, A.; Moreno, J.; Prósper, F.; García, M.; Echeveste, J. (2008) Regeneración de la superficie ocular: stem cells/células madre y técnicas reconstructivas. En: Anales del Sistema Sanitario de Navarra. Vol. 31; No. 1; pp. 53-69; 1137-6627; Consultado en: 2018/05/02/14:27:44. Disponible en: http://scielo.isciii.es/scielo.php?script=sci_abstract&pid=S1137-66272008000100005&lng=es&nrm=iso&tlng=es.
Goel, Manik; Picciani, Renata G; Lee, Richard K; Bhattacharya, Sanjoy K (2010) Aqueous Humor Dynamics: A Review. En: The Open Ophthalmology Journal. Vol. 4; pp. 52-59; 1874-3641; Consultado en: 2018/05/02/03:36:27. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3032230/. Disponible en: 10.2174/1874364101004010052.
Dawson, D G.; John L. U; Henry F. Edelhauser (2011) Cornea and Sclera. En: Adler's Physiology of the Eye.: W B Saunders Company; 978-0-323-05714-1 978-0-323-08116-0; Consultado en: 2018/05/02/02:21:35. Disponible en: https://www.elsevier.com/books/adlers-physiology-of-the-eye/levin/978-0-323-05714-1.
Güell, J. L. (2015) Cornea. pp. 138 : Karger Medical and Scientific Publishers; 978-3-318-05453-8
Forrester, John V.; Dick, Andrew D.; McMenamin, Paul G.; Roberts, Fiona; Pearlman, Eric (2016) Chapter 4. En: The Eye (Fourth Edition). pp. 157-268.e4; W.B. Saunders; 978-0-7020-5554-6; Consultado en: 2018/05/01/23:26:43. Disponible en: https://www.sciencedirect.com/science/article/pii/B9780702055546000046.
Untitled Document. Consultado en: 2018/05/01/22:20:36. Disponible en: http://med.javeriana.edu.co/oftalmologia/materiales/refraccion.htm.
Mannis, Mark J.; Holland, Edward J. (2016) Cornea E-Book. pp. 2189 : Elsevier Health Sciences; 978-0-323-35758-6
Williams, K. Keven; Noe, Robin L.; Grossniklaus, Hans E.; Drews-Botsch, Carolyn; Edelhauser, Henry F. (1992) Correlation of Histologic Corneal Endothelial Cell Counts With Specular Microscopic Cell Density. En: Archives of Ophthalmology. Vol. 110; No. 8; pp. 1146-1149; 0003-9950; Consultado en: 2018/05/01/20:44:16. Disponible en: https://jamanetwork.com/journals/jamaophthalmology/fullarticle/639808. Disponible en: 10.1001/archopht.1992.01080200126039.
Zhang, Xue; Zeng, Xuhui; Xia, Xiao-Ming; Lingle, Christopher J. (2006) pH-regulated Slo3 K+ Channels: Properties of Unitary Currents. En: The Journal of General Physiology. Vol. 128; No. 3; pp. 301-315; 0022-1295; Consultado en: 2018/04/30/23:27:09. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2151565/. Disponible en: 10.1085/jgp.200609551.
Du, Jintang; Aleff, Ross A.; Soragni, Elisabetta; Kalari, Krishna; Nie, Jinfu; Tang, Xiaojia; Davila, Jaime; Kocher, Jean-Pierre; Patel, Sanjay V.; Gottesfeld, Joel M.; Baratz, Keith H.; Wieben, Eric D. (2015) RNA toxicity and missplicing in the common eye disease fuchs endothelial corneal dystrophy. En: The Journal of Biological Chemistry. Vol. 290; No. 10; pp. 5979-5990; 1083-351X; Disponible en: 10.1074/jbc.M114.621607.
Chung, Doug D.; Frausto, Ricardo F.; Lin, Benjamin R.; Hanser, Evelyn M.; Cohen, Zack; Aldave, Anthony J. (2017) Transcriptomic Profiling of Posterior Polymorphous Corneal Dystrophy. En: Investigative Ophthalmology & Visual Science. Vol. 58; No. 7; pp. 3202-3214; 1552-5783; Disponible en: 10.1167/iovs.17-21423.
Chen, Yinyin; Huang, Kevin; Nakatsu, Martin N.; Xue, Zhigang; Deng, Sophie X.; Fan, Guoping (2013) Identification of novel molecular markers through transcriptomic analysis in human fetal and adult corneal endothelial cells. En: Human Molecular Genetics. Vol. 22; No. 7; pp. 1271-1279; 1460-2083; Disponible en: 10.1093/hmg/dds527.
Griffith, May; Osborne, Rosemarie; Munger, Rejean; Xiong, Xiaojuan; Doillon, Charles J.; Laycock, Noelani L. C.; Hakim, Malik; Song, Ying; Watsky, Mitchell A. (1999) Functional Human Corneal Equivalents Constructed from Cell Lines. En: Science. Vol. 286; No. 5447; pp. 2169-2172; 0036-8075, 1095-9203; Consultado en: 2018/04/30/22:59:12. Disponible en: http://science.sciencemag.org/content/286/5447/2169. Disponible en: 10.1126/science.286.5447.2169.
Dong, De-Li; Bai, Yun-Long; Cai, Ben-Zhi; Donev, Rossen (2016) Chapter Six. En: Advances in Protein Chemistry and Structural Biology. Ion channels as therapeutic targets, part B; Vol. 104; pp. 233-261; Academic Press; Consultado en: 2018/04/30/22:55:31. Disponible en: http://www.sciencedirect.com/science/article/pii/S1876162315000954.
Kaczmarek, Leonard K. (2013) Slack, Slick, and Sodium-Activated Potassium Channels. En: International Scholarly Research Notices. Consultado en: 2018/04/30/02:28:23. Disponible en: https://www.hindawi.com/journals/isrn/2013/354262/.
Eghrari, Allen O.; Riazuddin, S. Amer; Gottsch, John D. (2015) Overview of the Cornea: Structure, Function, and Development. En: Progress in Molecular Biology and Translational Science. Vol. 134; pp. 7-23; 1877-1173; Consultado en: 2018/04/16/22:32:47. Disponible en: https://jhu.pure.elsevier.com/en/publications/overview-of-the-cornea-structure-function-and-development-8. Disponible en: 10.1016/bs.pmbts.2015.04.001.
Kaji, Yuichi; Amano, Shiro; Usui, Tomohiko; Oshika, Tetsuro; Yamashiro, Kenji; Ishida, Susumu; Suzuki, Kaori; Tanaka, Sumiyoshi; Adamis, Anthony P.; Nagai, Ryoji; Horiuchi, Seiko (2003) Expression and function of receptors for advanced glycation end products in bovine corneal endothelial cells. En: Investigative Ophthalmology & Visual Science. Vol. 44; No. 2; pp. 521-528; 0146-0404
Kim, Junghyun; Kim, Chan-Sik; Sohn, Eunjin; Jeong, Il-Ha; Kim, Hyojun; Kim, Jin Sook (2011) Involvement of advanced glycation end products, oxidative stress and nuclear factor-kappaB in the development of diabetic keratopathy. En: Graefe's Archive for Clinical and Experimental Ophthalmology. Vol. 249; No. 4; pp. 529-536; 0721-832X, 1435-702X; Consultado en: 2018/11/02/15:41:51. Disponible en: http://link.springer.com/10.1007/s00417-010-1573-9. Disponible en: 10.1007/s00417-010-1573-9.
Aldrich, Benjamin T.; Schlötzer-Schrehardt, Ursula; Skeie, Jessica M.; Burckart, Kimberlee A.; Schmidt, Gregory A.; Reed, Cynthia R.; Zimmerman, M. Bridget; Kruse, Friedrich E.; Greiner, Mark A. (2017) Mitochondrial and Morphologic Alterations in Native Human Corneal Endothelial Cells Associated With Diabetes Mellitus. En: Investigative Opthalmology & Visual Science. Vol. 58; No. 4; pp. 2130 1552-5783; Consultado en: 2018/11/02/15:06:59. Disponible en: http://iovs.arvojournals.org/article.aspx?doi=10.1167/iovs.16-21094. Disponible en: 10.1167/iovs.16-21094.
Chloride channels | Ion channels | IUPHAR/BPS Guide to PHARMACOLOGY. Consultado en: 2018/10/27/04:00:14. Disponible en: http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=120.
(2009) Chloride channels. En: British Journal of Pharmacology. Vol. 158; No. Suppl 1; pp. S130-S134; 0007-1188; Consultado en: 2018/10/27/02:52:18. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2884561/. Disponible en: 10.1111/j.1476-5381.2009.00503_6.x.
Stauber, Tobias; Novarino, Gaia; Jentsch, Thomas J.; Alvarez-Leefmans, F. Javier; Delpire, Eric (2010) Chapter 12. En: Physiology and Pathology of Chloride Transporters and Channels in the Nervous System. pp. 209-231; San Diego: Academic Press; 978-0-12-374373-2; Consultado en: 2018/10/27/02:29:02. Disponible en: http://www.sciencedirect.com/science/article/pii/B9780123743732000121.
Storr-Paulsen, Allan; Singh, Amardeep; Jeppesen, Helene; Norregaard, Jens C.; Thulesen, Jesper (2014) Corneal endothelial morphology and central thickness in patients with type II diabetes mellitus. En: Acta Ophthalmologica. Vol. 92; No. 2; pp. 158-160; 1755375X; Consultado en: 2018/10/22/21:33:23. Disponible en: http://doi.wiley.com/10.1111/aos.12064. Disponible en: 10.1111/aos.12064.
Gees, Maarten; Colsoul, Barbara; Nilius, Bernd (2010) The Role of Transient Receptor Potential Cation Channels in Ca2+ Signaling. En: Cold Spring Harbor Perspectives in Biology. Vol. 2; No. 10; 1943-0264; Consultado en: 2018/10/18/22:04:51. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2944357/. Disponible en: 10.1101/cshperspect.a003962.
Mergler, Stefan; Valtink, Monika; Takayoshi, Sumioka; Okada, Yuka; Miyajima, Masayasu; Saika, Shizuya; Reinach, Peter S. (2014) Temperature-Sensitive Transient Receptor Potential Channels in Corneal Tissue Layers and Cells. En: Ophthalmic Research. Vol. 52; No. 3; pp. 151-159; 0030-3747, 1423-0259; Consultado en: 2018/10/18/21:25:33. Disponible en: https://www.karger.com/Article/FullText/365334. Disponible en: 10.1159/000365334.
Zeng, Bo; Chen, Gui-Lan; Garcia-Vaz, Eliana; Bhandari, Sunil; Daskoulidou, Nikoleta; Berglund, Lisa M.; Jiang, Hongni; Hallett, Thomas; Zhou, Lu-Ping; Huang, Li; Xu, Zi-Hao; Nair, Viji; Nelson, Robert G.; Ju, Wenjun; Kretzler, Matthias; Atkin, Stephen L.; Gomez, Maria F.; Xu, Shang-Zhong (2017) ORAI channels are critical for receptor-mediated endocytosis of albumin. En: Nature Communications. Vol. 8; No. 1; pp. 1920 2041-1723; Consultado en: 2018/10/18/21:00:17. Disponible en: https://www.nature.com/articles/s41467-017-02094-y. Disponible en: 10.1038/s41467-017-02094-y.
Mergler, S.; Valtink, M.; Engelmann, K.; Pleyer, U. (2008) New Insights Into Electrophysiology and Functional Transient Receptor Potential (Trp) Channel Expression in the Corneal Endothelium. En: Investigative Ophthalmology & Visual Science. Vol. 49; No. 13; pp. 3939-3939; 1552-5783; Consultado en: 2018/10/18/19:58:56. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2379333.
Mergler, Stefan; Valtink, Monika; Coulson-Thomas, Vivien Jane; Lindemann, Dirk; Reinach, Peter S.; Engelmann, Katrin; Pleyer, Uwe (2010) TRPV channels mediate temperature-sensing in human corneal endothelial cells. En: Experimental Eye Research. Vol. 90; No. 6; pp. 758-770; 1096-0007; Disponible en: 10.1016/j.exer.2010.03.010.
Torricelli, Andre A. M.; Wilson, Steven E. (2014) Cellular and extracellular matrix modulation of corneal stromal opacity. En: Experimental eye research. Vol. 0; pp. 151-160; 0014-4835; Consultado en: 2018/10/17/02:30:12. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4259857/. Disponible en: 10.1016/j.exer.2014.09.013.
Robbins, Ashlee; Kurose, Masayuki; Winterson, Barbara J.; Meng, Ian D. (2012) Menthol Activation of Corneal Cool Cells Induces TRPM8-Mediated Lacrimation but Not Nociceptive Responses in Rodents. En: Investigative Ophthalmology & Visual Science. Vol. 53; No. 11; pp. 7034-7042; 1552-5783; Disponible en: http://dx.doi.org/10.1167/iovs.12-10025. Disponible en: 10.1167/iovs.12-10025.
Huang, Da Wei; Sherman, Brad T; Tan, Qina; Collins, Jack R; Alvord, W Gregory; Roayaei, Jean; Stephens, Robert; Baseler, Michael W; Lane, H Clifford; Lempicki, Richard A (2007) The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists. En: Genome Biology. Vol. 8; No. 9; pp. R183 1465-6906; Consultado en: 2018/09/25/06:30:44. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2375021/. Disponible en: 10.1186/gb-2007-8-9-r183.
Nygaard, Vegard; Rødland, Einar Andreas; Hovig, Eivind (2016) Methods that remove batch effects while retaining group differences may lead to exaggerated confidence in downstream analyses. En: Biostatistics (Oxford, England). Vol. 17; No. 1; pp. 29-39; 1465-4644; Consultado en: 2018/09/25/06:25:12. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4679072/. Disponible en: 10.1093/biostatistics/kxv027.
Iwamoto, Takeo; Devoe, A. Gerard (1971) Electron Microscopic Studies on Fuchs' Combined Dystrophy : I. Posterior Portion of the Cornea. En: Investigative Ophthalmology & Visual Science. Vol. 10; No. 1; pp. 9-28; 1552-5783; Consultado en: 2018/09/25/01:38:10. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2158325.
Patel, Sangita P.; Bourne, William M. (2009) Corneal Endothelial Cell Proliferation: A Function of Cell Density. En: Investigative ophthalmology & visual science. Vol. 50; No. 6; pp. 2742-2746; 0146-0404; Consultado en: 2018/08/28/20:52:19. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2728347/. Disponible en: 10.1167/iovs.08-3002.
Corneal Endothelial Cell Proliferation: A Function of Cell Density. Consultado en: 2018/08/28/20:51:09. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2728347/.
Joyce, Nancy C. (2003) Proliferative capacity of the corneal endothelium. En: Progress in Retinal and Eye Research. Vol. 22; No. 3; pp. 359-389; 1350-9462
Mergler, Stefan; Garreis, Fabian; Sahlmüller, Monika; Reinach, Peter S.; Paulsen, Friedrich; Pleyer, Uwe (2011) Thermosensitive transient receptor potential channels (thermo-TRPs) in human corneal epithelial cells. En: Journal of Cellular Physiology. Vol. 226; No. 7; pp. 1828-1842; 0021-9541; Consultado en: 2018/07/17/02:41:58. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3072442/. Disponible en: 10.1002/jcp.22514.
Reinach, Peter S.; Mergler, Stefan; Okada, Yuka; Saika, Shizuya (2015) Ocular transient receptor potential channel function in health and disease. En: BMC Ophthalmology. Vol. 15; No. 1; pp. 153 1471-2415; Consultado en: 2018/07/16/18:30:34. Disponible en: https://doi.org/10.1186/s12886-015-0135-7. Disponible en: 10.1186/s12886-015-0135-7.
Venkatachalam, Kartik; Montell, Craig (2007) TRP Channels. En: Annual review of biochemistry. Vol. 76; pp. 387-417; 0066-4154; Consultado en: 2018/07/16/16:27:34. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4196875/. Disponible en: 10.1146/annurev.biochem.75.103004.142819.
TRP Channels | Annual Review of Biochemistry. Consultado en: 2018/07/16/16:25:31. Disponible en: https://www.annualreviews.org/doi/abs/10.1146/annurev.biochem.75.103004.142819?rfr_dat=cr_pub%3Dpubmed&url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org&journalCode=biochem.
Lopez, Jose J.; Albarran, Letizia; Gómez, Luis J.; Smani, Tarik; Salido, Gines M.; Rosado, Juan A. (2016) Molecular modulators of store-operated calcium entry. En: Biochimica et Biophysica Acta (BBA). Vol. 1863; No. 8; pp. 2037-2043; 0167-4889; Consultado en: 2018/06/06/13:40:06. Disponible en: http://www.sciencedirect.com/science/article/pii/S0167488916301240. Disponible en: 10.1016/j.bbamcr.2016.04.024.
Schmedt, Thore; Silva, Mariana Mazzini; Ziaei, Alireza; Jurkunas, Ula (2012) Molecular Bases of Corneal Endothelial Dystrophies. En: Experimental Eye Research. Vol. 95; No. 1; pp. 24-34; 0014-4835; Consultado en: 2018/06/06/13:01:52. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3273549/. Disponible en: 10.1016/j.exer.2011.08.002.
Putney, James W.; Steinckwich-Besançon, Natacha; Numaga-Tomita, Takuro; Davis, Felicity M.; Desai, Pooja N.; D’Agostin, Diane M.; Wu, Shilan; Bird, Gary S. (2017) The Functions of Store-operated Calcium Channels. En: Biochimica et biophysica acta. Vol. 1864; No. 6; pp. 900-906; 0006-3002; Consultado en: 2018/06/03/22:55:44. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5420336/. Disponible en: 10.1016/j.bbamcr.2016.11.028.
Mergler, Stefan; Valtink, Monika; Taetz, Katrin; Sahlmüller, Monika; Fels, Gabriele; Reinach, Peter S.; Engelmann, Katrin; Pleyer, Uwe (2011) Characterization of transient receptor potential vanilloid channel 4 (TRPV4) in human corneal endothelial cells. En: Experimental Eye Research. Vol. 93; No. 5; pp. 710-719; 1096-0007; Disponible en: 10.1016/j.exer.2011.09.021.
Prakriya, Murali; Lewis, Richard S. (2015) Store-Operated Calcium Channels. En: Physiological Reviews. Vol. 95; No. 4; pp. 1383-1436; 0031-9333; Consultado en: 2018/06/03/22:36:14. Disponible en: https://www.physiology.org/doi/abs/10.1152/physrev.00020.2014. Disponible en: 10.1152/physrev.00020.2014.
Hong, Show-Jen; Wu, Kwou-Yeung; Wang, Hwei-Zu; Fong, Jim. C (2003) Change of Cytosolic Ca2+ Mobility in Cultured Bovine Corneal Endothelial Cells by Endothelin-1. En: Journal of Ocular Pharmacology and Therapeutics. Vol. 19; No. 1; pp. 1-9; 1080-7683; Consultado en: 2018/06/03/02:56:10. Disponible en: https://www.liebertpub.com/doi/abs/10.1089/108076803762718060. Disponible en: 10.1089/108076803762718060.
Mergler, Stefan; Dannowski, Haike; Bednarz, Jürgen; Engelmann, Katrin; Hartmann, Christian; Pleyer, Uwe (2003) Calcium influx induced by activation of receptor tyrosine kinases in SV40-transfected human corneal endothelial cells. En: Experimental Eye Research. Vol. 77; No. 4; pp. 485-495; 0014-4835
Harrison, Theresa A.; He, Zhiguo; Boggs, Kristin; Thuret, Gilles; Liu, Hong-Xiang; Defoe, Dennis M. (2016) Corneal endothelial cells possess an elaborate multipolar shape to maximize the basolateral to apical membrane area. En: Molecular Vision. Vol. 22; pp. 31-39; 1090-0535; Consultado en: 2018/06/03/00:10:48. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4814271/.
Meeting, Kyoto Cornea Club (1997) Current Opinions in the Kyoto Cornea Club: Proceedings of the First Annual Meeting of the Kyoto Cornea Club, Kyoto, Japan, December 1-2, 1995. pp. 108 : Kugler Publications; 978-90-6299-138-9
Tinggi, Ujang (2008) Selenium: its role as antioxidant in human health. En: Environmental Health and Preventive Medicine. Vol. 13; No. 2; pp. 102-108; 1342-078X, 1347-4715; Consultado en: 2019/02/04/16:53:41. Disponible en: http://link.springer.com/10.1007/s12199-007-0019-4. Disponible en: 10.1007/s12199-007-0019-4.
Bresgen, Nikolaus; Eckl, Peter (2015) Oxidative Stress and the Homeodynamics of Iron Metabolism. En: Biomolecules. Vol. 5; No. 2; pp. 808-847; 2218-273X; Consultado en: 2019/02/04/16:50:26. Disponible en: http://www.mdpi.com/2218-273X/5/2/808. Disponible en: 10.3390/biom5020808.
Glaser, Nicole; Little, Christopher; Lo, Weei; Cohen, Michael; Tancredi, Daniel; Wulff, Heike; O'Donnell, Martha (2017) Treatment with the KCa3.1 inhibitor TRAM-34 during diabetic ketoacidosis reduces inflammatory changes in the brain: TRAM-34 reduces DKA-related brain inflammation. En: Pediatric Diabetes. Vol. 18; No. 5; pp. 356-366; 1399543X; Consultado en: 2019/02/01/17:22:20. Disponible en: http://doi.wiley.com/10.1111/pedi.12396. Disponible en: 10.1111/pedi.12396.
Huang, Chunling; Pollock, Carol A.; Chen, Xin-Ming (2014) Role of the potassium channel KCa3.1 in diabetic nephropathy. En: Clinical Science. Vol. 127; No. 7; pp. 423-433; 0143-5221, 1470-8736; Consultado en: 2019/02/01/17:01:29. Disponible en: http://clinsci.org/lookup/doi/10.1042/CS20140075. Disponible en: 10.1042/CS20140075.
Tandon, A.; Tovey, J. C. K.; Sharma, A.; Gupta, R.; Mohan, R. R. (2010) Role of transforming growth factor Beta in corneal function, biology and pathology. En: Current Molecular Medicine. Vol. 10; No. 6; pp. 565-578; 1875-5666
Kaji, Y. (2005) Prevention of diabetic keratopathy. En: The British Journal of Ophthalmology. Vol. 89; No. 3; pp. 254-255; 0007-1161; Disponible en: 10.1136/bjo.2004.055541.
Thomas, Merlin C.; Brownlee, Michael; Susztak, Katalin; Sharma, Kumar; Jandeleit-Dahm, Karin A. M.; Zoungas, Sophia; Rossing, Peter; Groop, Per-Henrik; Cooper, Mark E. (2015) Diabetic kidney disease. En: Nature Reviews Disease Primers. pp. 15018 2056-676X; Consultado en: 2019/02/01/15:47:16. Disponible en: http://www.nature.com/articles/nrdp201518. Disponible en: 10.1038/nrdp.2015.18.
Yan, Liang-Jun (2018) Redox imbalance stress in diabetes mellitus: Role of the polyol pathway. En: Animal Models and Experimental Medicine. Vol. 1; No. 1; pp. 7-13; 2576-2095; Disponible en: 10.1002/ame2.12001.
Forbes, Josephine M.; Cooper, Mark E. (2013) Mechanisms of diabetic complications. En: Physiological Reviews. Vol. 93; No. 1; pp. 137-188; 1522-1210; Disponible en: 10.1152/physrev.00045.2011.
Goyer, Benjamin; Thériault, Mathieu; Gendron, Sébastien P.; Brunette, Isabelle; Rochette, Patrick J.; Proulx, Stéphanie (2018) Extracellular Matrix and Integrin Expression Profiles in Fuchs Endothelial Corneal Dystrophy Cells and Tissue Model. En: Tissue Engineering. Part A. Vol. 24; No. 7-8; pp. 607-615; 1937-335X; Disponible en: 10.1089/ten.TEA.2017.0128.
Okumura, Naoki; Minamiyama, Ryuki; Ho, Leona Ty; Kay, EunDuck P.; Kawasaki, Satoshi; Tourtas, Theofilos; Schlötzer-Schrehardt, Ursula; Kruse, Friedrich E.; Young, Robert D.; Quantock, Andrew J.; Kinoshita, Shigeru; Koizumi, Noriko (2015) Involvement of ZEB1 and Snail1 in excessive production of extracellular matrix in Fuchs endothelial corneal dystrophy. En: Laboratory Investigation; a Journal of Technical Methods and Pathology. Vol. 95; No. 11; pp. 1291-1304; 1530-0307; Disponible en: 10.1038/labinvest.2015.111.
Cui, Zekai; Zeng, Qiaolang; Guo, Yonglong; Liu, Shiwei; Wang, Peiyuan; Xie, Mengyuan; Chen, Jiansu; Krahe, Ralf (2018) Pathological molecular mechanism of symptomatic late-onset Fuchs endothelial corneal dystrophy by bioinformatic analysis. En: PLOS ONE. Vol. 13; No. 5; pp. e0197750 1932-6203; Consultado en: 2019/02/01/04:18:13. Disponible en: http://dx.plos.org/10.1371/journal.pone.0197750. Disponible en: 10.1371/journal.pone.0197750.
Meekins, Landon C.; Rosado-Adames, Noel; Maddala, Rupalatha; Zhao, Jiagang J.; Rao, Ponugoti V.; Afshari, Natalie A. (2016) Corneal Endothelial Cell Migration and Proliferation Enhanced by Rho Kinase (ROCK) Inhibitors in In Vitro and In Vivo Models. En: Investigative Opthalmology & Visual Science. Vol. 57; No. 15; pp. 6731 1552-5783; Consultado en: 2019/02/01/04:03:47. Disponible en: http://iovs.arvojournals.org/article.aspx?doi=10.1167/iovs.16-20414. Disponible en: 10.1167/iovs.16-20414.
Soh, Yu Qiang; Peh, Gary; George, Benjamin Lawrence; Seah, Xin Yi; Primalani, Nishal Kishinchand; Adnan, Khadijah; Mehta, Jodhbir Singh (2016) Predicative Factors for Corneal Endothelial Cell Migration. En: Investigative Opthalmology & Visual Science. Vol. 57; No. 2; pp. 338 1552-5783; Consultado en: 2019/02/01/00:13:38. Disponible en: http://iovs.arvojournals.org/article.aspx?doi=10.1167/iovs.15-18300. Disponible en: 10.1167/iovs.15-18300.
Li, Shimin; Kim, Edward; Bonanno, Joseph A. (2016) Fluid transport by the cornea endothelium is dependent on buffering lactic acid efflux. En: American Journal of Physiology-Cell Physiology. Vol. 311; No. 1; pp. C116-C126; 0363-6143, 1522-1563; Consultado en: 2019/01/31/23:49:04. Disponible en: http://www.physiology.org/doi/10.1152/ajpcell.00095.2016. Disponible en: 10.1152/ajpcell.00095.2016.
Nguyen, Tracy T.; Bonanno, Joseph A. (2012) Lactate-H + Transport Is a Significant Component of the In Vivo Corneal Endothelial Pump. En: Investigative Opthalmology & Visual Science. Vol. 53; No. 4; pp. 2020 1552-5783; Consultado en: 2019/01/31/23:43:55. Disponible en: http://iovs.arvojournals.org/article.aspx?doi=10.1167/iovs.12-9475. Disponible en: 10.1167/iovs.12-9475.
Gabelt, B'Ann True; Paul L. Kaufman; Production and Flow of Aqueous Humor. En: Adler's Physiology of the Eye.: W B Saunders Company; 978-0-323-05714-1 978-0-323-08116-0
Riordan-Eva, Paul; Riordan-Eva, Paul; Augsburger, James J. (2017) Anatomy & Embryology of the Eye. En: Vaughan & Asbury's General Ophthalmology, 19e. No. Book, Section; New York, NY: McGraw-Hill Education; Consultado en: 2019/01/30/. Disponible en: accessmedicine.mhmedical.com/content.aspx?aid=1144466589.
Doutch, James J.; Quantock, Andrew J.; Joyce, Nancy C.; Meek, Keith M. (2012) Ultraviolet Light Transmission through the Human Corneal Stroma Is Reduced in the Periphery. En: Biophysical Journal. Vol. 102; No. 6; pp. 1258-1264; 00063495; Consultado en: 2019/01/30/17:36:55. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0006349512002263. Disponible en: 10.1016/j.bpj.2012.02.023.
Shih, K. Co; Lam, K. S.-L.; Tong, L. (2017) A systematic review on the impact of diabetes mellitus on the ocular surface. En: Nutrition & Diabetes. Vol. 7; No. 3; pp. e251 2044-4052; Disponible en: 10.1038/nutd.2017.4.
A systematic review on the impact of diabetes mellitus on the ocular surface | Nutrition & Diabetes. Consultado en: 2019/01/27/23:42:54. Disponible en: https://www.nature.com/articles/nutd20174.
Diabetes. Consultado en: 2019/01/27/23:04:50. Disponible en: https://www.who.int/es/news-room/fact-sheets/detail/diabetes.
Deleterious impact of hyperglycemia on cystic fibrosis airway ion transport and epithelial repair. Consultado en: 2019/01/10/01:22:33. Disponible en: https://www.sciencedirect.com/science/article/pii/S1569199315001022.
Huang, Chunling; Pollock, Carol A.; Chen, Xin-Ming (2014) High Glucose Induces CCL20 in Proximal Tubular Cells via Activation of the KCa3.1 Channel. En: PLOS ONE. Vol. 9; No. 4; pp. e95173 1932-6203; Consultado en: 2019/01/10/01:22:04. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0095173. Disponible en: 10.1371/journal.pone.0095173.
Huang, Xi; Jan, Lily Yeh (2014) Targeting potassium channels in cancer. En: The Journal of Cell Biology. Vol. 206; No. 2; pp. 151-162; 1540-8140; Disponible en: 10.1083/jcb.201404136.
Shao, Zhifei; Makinde, Toluwalope O.; Agrawal, Devendra K. (2011) Calcium-Activated Potassium Channel KCa3.1 in Lung Dendritic Cell Migration. En: American Journal of Respiratory Cell and Molecular Biology. Vol. 45; No. 5; pp. 962-968; 1044-1549; Consultado en: 2019/01/10/01:17:33. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3262686/. Disponible en: 10.1165/rcmb.2010-0514OC.
Suarez, Jorge; Hu, Yong; Makino, Ayako; Fricovsky, Eduardo; Wang, Hong; Dillmann, Wolfgang H. (2008) Alterations in mitochondrial function and cytosolic calcium induced by hyperglycemia are restored by mitochondrial transcription factor A in cardiomyocytes. En: American Journal of Physiology-Cell Physiology. Vol. 295; No. 6; pp. C1561-C1568; 0363-6143; Consultado en: 2018/12/14/09:47:18. Disponible en: https://www.physiology.org/doi/full/10.1152/ajpcell.00076.2008. Disponible en: 10.1152/ajpcell.00076.2008.
Lu, Luo (2006) Stress-induced corneal epithelial apoptosis mediated by K+ channel activation. En: Progress in Retinal and Eye Research. Vol. 25; No. 6; pp. 515-538; 1350-9462; Disponible en: 10.1016/j.preteyeres.2006.07.004.
Kernt, Marcus; Hirneiss, C.; Neubauer, A. S.; Kampik, A. (2010) Minocycline is cytoprotective in human corneal endothelial cells and induces anti-apoptotic B-cell CLL/lymphoma 2 (Bcl-2) and X-linked inhibitor of apoptosis (XIAP). En: The British Journal of Ophthalmology. Vol. 94; No. 7; pp. 940-946; 1468-2079; Disponible en: 10.1136/bjo.2009.165092.
Brownlee, Michael (2005) The pathobiology of diabetic complications: a unifying mechanism. En: Diabetes. Vol. 54; No. 6; pp. 1615-1625; 0012-1797
Ichim, Gabriel; Lopez, Jonathan; Ahmed, Shafiq U.; Muthalagu, Nathiya; Giampazolias, Evangelos; Delgado, M. Eugenia; Haller, Martina; Riley, Joel S.; Mason, Susan M.; Athineos, Dimitris; Parsons, Melissa J.; van de Kooij, Bert; Bouchier-Hayes, Lisa; Chalmers, Anthony J.; Rooswinkel, Rogier W.; Oberst, Andrew; Blyth, Karen; Rehm, Markus; Murphy, Daniel J.; Tait, Stephen W.G. (2015) Limited Mitochondrial Permeabilization Causes DNA Damage and Genomic Instability in the Absence of Cell Death. En: Molecular Cell. Vol. 57; No. 5; pp. 860-872; 10972765; Consultado en: 2018/11/26/14:33:48. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S1097276515000192. Disponible en: 10.1016/j.molcel.2015.01.018.
Cho, Dong-Hyung; Nakamura, Tomohiro; Fang, Jianguo; Cieplak, Piotr; Godzik, Adam; Gu, Zezong; Lipton, Stuart A. (2009) S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. En: Science (New York, N.Y.). Vol. 324; No. 5923; pp. 102-105; 1095-9203; Disponible en: 10.1126/science.1171091.
Vanden Berghe, T.; Vanlangenakker, N.; Parthoens, E.; Deckers, W.; Devos, M.; Festjens, N.; Guerin, C. J.; Brunk, U. T.; Declercq, W.; Vandenabeele, P. (2010) Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. En: Cell Death and Differentiation. Vol. 17; No. 6; pp. 922-930; 1476-5403; Disponible en: 10.1038/cdd.2009.184.
Marchitti, Satori A; Chen, Ying; Thompson, David C; Vasiliou, Vasilis (2011) Ultraviolet Radiation: Cellular Antioxidant Response and the Role of Ocular Aldehyde Dehydrogenase Enzymes:. En: Eye & Contact Lens: Science & Clinical Practice. Vol. 37; No. 4; pp. 206-213; 1542-2321; Consultado en: 2018/11/15/13:11:40. Disponible en: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00140068-201107000-00007. Disponible en: 10.1097/ICL.0b013e3182212642.
Nita, Małgorzata; Grzybowski, Andrzej (2016) The Role of the Reactive Oxygen Species and Oxidative Stress in the Pathomechanism of the Age-Related Ocular Diseases and Other Pathologies of the Anterior and Posterior Eye Segments in Adults. En: Oxidative Medicine and Cellular Longevity. Vol. 2016; pp. 1-23; 1942-0900, 1942-0994; Consultado en: 2018/11/15/12:57:37. Disponible en: http://www.hindawi.com/journals/omcl/2016/3164734/. Disponible en: 10.1155/2016/3164734.
Zhu, Cheng; Joyce, Nancy C. (2004) Proliferative response of corneal endothelial cells from young and older donors. En: Investigative Ophthalmology & Visual Science. Vol. 45; No. 6; pp. 1743-1751; 0146-0404
Senoo, T.; Joyce, N. C. (2000) Cell cycle kinetics in corneal endothelium from old and young donors. En: Investigative Ophthalmology & Visual Science. Vol. 41; No. 3; pp. 660-667; 0146-0404
Valavanidis, Athanasios; Vlachogianni, Thomais; Fiotakis, Constantinos (2009) 8-hydroxy-2'-deoxyguanosine (8-OHdG): A critical biomarker of oxidative stress and carcinogenesis. En: Journal of Environmental Science and Health. Part C, Environmental Carcinogenesis & Ecotoxicology Reviews. Vol. 27; No. 2; pp. 120-139; 1532-4095; Disponible en: 10.1080/10590500902885684.
Joyce, Nancy C.; Zhu, Cheng C.; Harris, Deshea L. (2009) Relationship among Oxidative Stress, DNA Damage, and Proliferative Capacity in Human Corneal Endothelium. En: Investigative Ophthalmology & Visual Science. Vol. 50; No. 5; pp. 2116-2122; 1552-5783; Consultado en: 2018/11/15/04:08:10. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2126584. Disponible en: 10.1167/iovs.08-3007.
Kaczmarek, Leonard K. (2013) Slack, Slick, and Sodium-Activated Potassium Channels. En: International Scholarly Research Notices. Consultado en: 2018/11/05/04:27:01. Disponible en: https://www.hindawi.com/journals/isrn/2013/354262/.
Paulais, Marc; Lachheb, Sahran; Teulon, Jacques (2006) A Na+-and Cl−-activated K+ Channel in the Thick Ascending Limb of Mouse Kidney. En: The Journal of General Physiology. Vol. 127; No. 2; pp. 205-215; 0022-1295, 1540-7748; Consultado en: 2018/11/05/04:22:14. Disponible en: http://jgp.rupress.org/content/127/2/205. Disponible en: 10.1085/jgp.200509360.
Hayashi, Mikio; Wang, Jing; Hede, Susanne E.; Novak, Ivana (2012) An intermediate-conductance Ca2+-activated K+ channel is important for secretion in pancreatic duct cells. En: American Journal of Physiology. Cell Physiology. Vol. 303; No. 2; pp. C151-159; 1522-1563; Disponible en: 10.1152/ajpcell.00089.2012.
Hipfner, David R.; Cohen, Stephen M. (2003) The Drosophila sterile-20 kinase slik controls cell proliferation and apoptosis during imaginal disc development. En: PLoS biology. Vol. 1; No. 2; pp. E35 1545-7885; Disponible en: 10.1371/journal.pbio.0000035.
Dolga, A M; Terpolilli, N; Kepura, F; Nijholt, I M; Knaus, H-G; D'Orsi, B; Prehn, J H M; Eisel, U L M; Plant, T; Plesnila, N; Culmsee, C (2011) KCa2 channels activation prevents [Ca2+]i deregulation and reduces neuronal death following glutamate toxicity and cerebral ischemia. En: Cell Death & Disease. Vol. 2; No. 4; pp. e147 2041-4889; Consultado en: 2018/11/05/03:17:25. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3122061/. Disponible en: 10.1038/cddis.2011.30.
Takai, Jun; Santu, Alexandra; Zheng, Haifeng; Koh, Sang Don; Ohta, Masanori; Filimban, Linda M.; Lemaître, Vincent; Teraoka, Ryutaro; Jo, Hanjoong; Miura, Hiroto (2013) Laminar shear stress upregulates endothelial Ca²⁺-activated K⁺ channels KCa2.3 and KCa3.1 via a Ca²⁺/calmodulin-dependent protein kinase kinase/Akt/p300 cascade. En: American Journal of Physiology. Heart and Circulatory Physiology. Vol. 305; No. 4; pp. H484-493; 1522-1539; Disponible en: 10.1152/ajpheart.00642.2012.
Tajhya, Rajeev B.; Hu, Xueyou; Tanner, Mark R.; Huq, Redwan; Kongchan, Natee; Neilson, Joel R.; Rodney, George G.; Horrigan, Frank T.; Timchenko, Lubov T.; Beeton, Christine (2016) Functional KCa1.1 channels are crucial for regulating the proliferation, migration and differentiation of human primary skeletal myoblasts. En: Cell Death & Disease. Vol. 7; No. 10; pp. e2426 2041-4889; Disponible en: 10.1038/cddis.2016.324.
Potier, M; Chantome, A; Joulin, V; Girault, A; Roger, S; Besson, P; Jourdan, M-L; LeGuennec, J-Y; Bougnoux, P; Vandier, C (2011) The SK3/KCa2.3 potassium channel is a new cellular target for edelfosine. En: British Journal of Pharmacology. Vol. 162; No. 2; pp. 464-479; 0007-1188; Consultado en: 2018/11/05/02:33:22. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3031066/. Disponible en: 10.1111/j.1476-5381.2010.01044.x.
Schwab, Albrecht; Fabian, Anke; Hanley, Peter J.; Stock, Christian (2012) Role of Ion Channels and Transporters in Cell Migration. En: Physiological Reviews. Vol. 92; No. 4; pp. 1865-1913; 0031-9333; Consultado en: 2018/11/04/22:04:35. Disponible en: https://www.physiology.org/doi/full/10.1152/physrev.00018.2011. Disponible en: 10.1152/physrev.00018.2011.
Ouadid-Ahidouch, Halima; Ahidouch, Ahmed (2013) K+ channels and cell cycle progression in tumor cells. En: Frontiers in Physiology. Vol. 4; 1664-042X; Consultado en: 2018/11/04/21:48:41. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3747328/. Disponible en: 10.3389/fphys.2013.00220.
Santi, Celia M.; Butler, Alice; Kuhn, Julia; Wei, Aguan; Salkoff, Lawrence (2009) Bovine and Mouse SLO3 K+ Channels. En: The Journal of Biological Chemistry. Vol. 284; No. 32; pp. 21589-21598; 0021-9258; Consultado en: 2018/11/04/17:56:39. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2755883/. Disponible en: 10.1074/jbc.M109.015040.
Song, Penghong; Du, Yehui; Song, Wenfeng; Chen, Hao; Xuan, Zefeng; Zhao, Long; Chen, Jun; Chen, Jian; Guo, Danjing; Jin, Cheng; Zhao, Yongchao; Tuo, Biguang; Zheng, Shusen (2017) KCa3.1 as an Effective Target for Inhibition of Growth and Progression of Intrahepatic Cholangiocarcinoma. En: Journal of Cancer. Vol. 8; No. 9; pp. 1568-1578; 1837-9664; Consultado en: 2018/11/04/17:46:18. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5535712/. Disponible en: 10.7150/jca.18697.
Jackson, William F. (2010) KV1.3: A new therapeutic target to control vascular smooth muscle cell proliferation. En: Arteriosclerosis, thrombosis, and vascular biology. Vol. 30; No. 6; pp. 1073-1074; 1079-5642; Consultado en: 2018/11/04/05:42:24. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2891047/. Disponible en: 10.1161/ATVBAHA.110.206565.
Vandorpe, D. H.; Shmukler, B. E.; Jiang, L.; Lim, B.; Maylie, J.; Adelman, J. P.; de Franceschi, L.; Cappellini, M. D.; Brugnara, C.; Alper, S. L. (1998) cDNA cloning and functional characterization of the mouse Ca2+-gated K+ channel, mIK1. Roles in regulatory volume decrease and erythroid differentiation. En: The Journal of Biological Chemistry. Vol. 273; No. 34; pp. 21542-21553; 0021-9258
Chandy, K. George; Wulff, Heike; Beeton, Christine; Pennington, Michael; Gutman, George A.; Cahalan, Michael D. (2004) K+ channels as targets for specific immunomodulation. En: Trends in Pharmacological Sciences. Vol. 25; No. 5; pp. 280-289; 0165-6147; Disponible en: 10.1016/j.tips.2004.03.010.
Wei, Aguan D.; Gutman, George A.; Aldrich, Richard; Chandy, K. George; Grissmer, Stephan; Wulff, Heike (2005) International Union of Pharmacology. LII. Nomenclature and Molecular Relationships of Calcium-Activated Potassium Channels. En: Pharmacological Reviews. Vol. 57; No. 4; pp. 463-472; 0031-6997, 1521-0081; Consultado en: 2018/11/04/03:53:18. Disponible en: http://pharmrev.aspetjournals.org/content/57/4/463. Disponible en: 10.1124/pr.57.4.9.
International Union of Pharmacology. LII. Nomenclature and Molecular Relationships of Calcium-Activated Potassium Channels | Pharmacological Reviews. Consultado en: 2018/11/04/03:17:27. Disponible en: http://pharmrev.aspetjournals.org/content/57/4/463.
Ha, Tal Soo; Heo, Moon-Sun; Park, Chul-Seung (2004) Functional Effects of Auxiliary β4-Subunit on Rat Large-Conductance Ca2+-Activated K+ Channel. En: Biophysical Journal. Vol. 86; No. 5; pp. 2871-2882; 0006-3495; Consultado en: 2018/11/04/03:04:15. Disponible en: http://www.sciencedirect.com/science/article/pii/S0006349504743398. Disponible en: 10.1016/S0006-3495(04)74339-8.
Guéguinou, Maxime; Chantôme, Aurélie; Fromont, Gaëlle; Bougnoux, Philippe; Vandier, Christophe; Potier-Cartereau, Marie (2014) KCa and Ca2+ channels: The complex thought. En: Biochimica et Biophysica Acta (BBA). Calcium Signaling in Health and Disease; Vol. 1843; No. 10; pp. 2322-2333; 0167-4889; Consultado en: 2018/11/03/22:56:19. Disponible en: http://www.sciencedirect.com/science/article/pii/S0167488914000834. Disponible en: 10.1016/j.bbamcr.2014.02.019.
Mobasseri, Majid; Shirmohammadi, Masoud; Amiri, Tarlan; Vahed, Nafiseh; Hosseini Fard, Hossein; Ghojazadeh, Morteza (2020) Prevalence and incidence of type 1 diabetes in the world: a systematic review and meta-analysis. En: Health Promotion Perspectives. Vol. 10; No. 2; pp. 98-115; 2228-6497; Consultado en: 2020/08/17/12:24:10. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7146037/. Disponible en: 10.34172/hpp.2020.18.
Lindner, L. M. E.; Rathmann, W.; Rosenbauer, J. (2018) Inequalities in glycaemic control, hypoglycaemia and diabetic ketoacidosis according to socio-economic status and area-level deprivation in Type 1 diabetes mellitus: a systematic review. En: Diabetic Medicine. Vol. 35; No. 1; pp. 12-32; 1464-5491; Consultado en: 2020/08/17/13:14:29. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1111/dme.13519. Disponible en: 10.1111/dme.13519.
Pandova, Maya Georgieva (2019) Diabetic Retinopathy and Blindness: An Epidemiological Overview. En: Visual Impairment and Blindness. Consultado en: 2020/08/17/13:17:43. Disponible en: https://www.intechopen.com/online-first/diabetic-retinopathy-and-blindness-an-epidemiological-overview. Disponible en: 10.5772/intechopen.88756.
Fang, Michael; Echouffo-Tcheugui, Justin B.; Selvin, Elizabeth (2020) Burden of Complications in U.S. Adults With Young-Onset Type 2 or Type 1 Diabetes. En: Diabetes Care. Vol. 43; No. 4; pp. e47-e49; 0149-5992, 1935-5548; Consultado en: 2020/08/17/14:00:48. Disponible en: https://care.diabetesjournals.org/content/43/4/e47. Disponible en: 10.2337/dc19-2394.
Jeganathan, V. Swetha E.; Wang, Jie Jin; Wong, Tien Yin (2008) Ocular Associations of Diabetes Other Than Diabetic Retinopathy. En: Diabetes Care. Vol. 31; No. 9; pp. 1905-1912; 0149-5992; Consultado en: 2020/08/17/14:39:16. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2518369/. Disponible en: 10.2337/dc08-0342.
Tuft, S. J.; Coster, D. J. (1990) The corneal endothelium. En: Eye. Vol. 4; No. 3; pp. 389-424; 1476-5454; Consultado en: 2020/08/19/23:08:22. Disponible en: https://www.nature.com/articles/eye199053. Disponible en: 10.1038/eye.1990.53.
Cochrane Handbook for Systematic Reviews of Interventions. Consultado en: 2020/09/08/17:55:35. Disponible en: /handbook/current.
Toro, Ligia; Li, Min; Zhang, Zhu; Singh, Harpreet; Wu, Yong; Stefani, Enrico (2014) MaxiK channel and cell signalling. En: Pflugers Archiv : European journal of physiology. Vol. 466; No. 5; pp. 875-886; 0031-6768; Consultado en: 2020/09/18/10:21:15. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3969412/. Disponible en: 10.1007/s00424-013-1359-0.
Yagi-Yaguchi, Yukari; Yamaguchi, Takefumi; Higa, Kazunari; Suzuki, Terumasa; Aketa, Naohiko; Dogru, Murat; Satake, Yoshiyuki; Shimazaki, Jun (2017) Association between corneal endothelial cell densities and elevated cytokine levels in the aqueous humor. En: Scientific Reports. Vol. 7; No. 1; pp. 13603 2045-2322; Consultado en: 2020/09/18/10:44:14. Disponible en: https://www.nature.com/articles/s41598-017-14131-3. Disponible en: 10.1038/s41598-017-14131-3.
Yagi-Yaguchi, Yukari; Yamaguchi, Takefumi; Higa, Kazunari; Suzuki, Terumasa; Aketa, Naohiko; Dogru, Murat; Satake, Yoshiyuki; Shimazaki, Jun (2017) Association between corneal endothelial cell densities and elevated cytokine levels in the aqueous humor. En: Scientific Reports. Vol. 7; No. 1; pp. 13603 2045-2322; Consultado en: 2020/09/18/10:46:25. Disponible en: https://www.nature.com/articles/s41598-017-14131-3. Disponible en: 10.1038/s41598-017-14131-3.
Lass, Jonathan H.; Beck, Roy W.; Benetz, Beth Ann; Dontchev, Mariya; Gal, Robin L.; Holland, Edward J.; Kollman, Craig; Mannis, Mark J.; Price, Francis; Raber, Irving; Stark, Walter; Stulting, R. Doyle; Sugar, Alan; Group, for the Cornea Donor Study Investigator (2011) Baseline Factors Related to Endothelial Cell Loss Following Penetrating Keratoplasty. En: Archives of Ophthalmology. Vol. 129; No. 9; pp. 1149-1154; 0003-9950; Consultado en: 2020/09/18/10:52:03. Disponible en: https://jamanetwork.com/journals/jamaophthalmology/fullarticle/1106439. Disponible en: 10.1001/archophthalmol.2011.102.
Feizi, Sepehr (2018) Corneal endothelial cell dysfunction: etiologies and management. En: Therapeutic Advances in Ophthalmology. Vol. 10; 2515-8414; Consultado en: 2020/09/18/12:54:13. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6293368/. Disponible en: 10.1177/2515841418815802.
Singh, Harpreet; Stefani, Enrico; Toro, Ligia (2012) Intracellular BKCa (iBKCa) channels. En: The Journal of Physiology. Vol. 590; No. 23; pp. 5937-5947; 1469-7793; Consultado en: 2020/09/18/23:30:55. Disponible en: https://physoc.onlinelibrary.wiley.com/doi/abs/10.1113/jphysiol.2011.215533. Disponible en: 10.1113/jphysiol.2011.215533.
Yan, Jiusheng; Aldrich, Richard W. (2012) BK potassium channel modulation by leucine-rich repeat-containing proteins. En: Proceedings of the National Academy of Sciences. Vol. 109; No. 20; pp. 7917-7922; 0027-8424, 1091-6490; Consultado en: 2020/10/29/17:29:52. Disponible en: https://www.pnas.org/content/109/20/7917. Disponible en: 10.1073/pnas.1205435109.
Skyler, Jay S.; Bakris, George L.; Bonifacio, Ezio; Darsow, Tamara; Eckel, Robert H.; Groop, Leif; Groop, Per-Henrik; Handelsman, Yehuda; Insel, Richard A.; Mathieu, Chantal; McElvaine, Allison T.; Palmer, Jerry P.; Pugliese, Alberto; Schatz, Desmond A.; Sosenko, Jay M.; Wilding, John P. H.; Ratner, Robert E. (2017) Differentiation of Diabetes by Pathophysiology, Natural History, and Prognosis. En: Diabetes. Vol. 66; No. 2; pp. 241-255; 0012-1797, 1939-327X; Consultado en: 2020/12/06/16:44:25. Disponible en: https://diabetes.diabetesjournals.org/content/66/2/241. Disponible en: 10.2337/db16-0806.
Hatou, Shin; Yamada, Masakazu; Akune, Yoko; Mochizuki, Hiroshi; Shiraishi, Atsushi; Joko, Takeshi; Nishida, Teruo; Tsubota, Kazuo (2010) Role of Insulin in Regulation of Na+-/K+-Dependent ATPase Activity and Pump Function in Corneal Endothelial Cells. En: Investigative Ophthalmology & Visual Science. Vol. 51; No. 8; pp. 3935-3942; 1552-5783; Consultado en: 2020/12/06/23:52:28. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2126373. Disponible en: 10.1167/iovs.09-4027.
Cernea, Simona; Dobreanu, Minodora (2013) Diabetes and beta cell function: from mechanisms to evaluation and clinical implications. En: Biochemia Medica. Vol. 23; No. 3; pp. 266-280; 1330-0962; Disponible en: 10.11613/bm.2013.033.
McCarey, Bernard E.; Edelhauser, Henry F.; Lynn, Michael J. (2008) Review of Corneal Endothelial Specular Microscopy for FDA Clinical Trials of Refractive Procedures, Surgical Devices and New Intraocular Drugs and Solutions. En: Cornea. Vol. 27; No. 1; pp. 1-16; 0277-3740; Consultado en: 2020/12/11/01:30:12. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3062434/. Disponible en: 10.1097/ICO.0b013e31815892da.
Van den Bogerd, Bert; Dhubhghaill, Sorcha Ní; Koppen, Carina; Tassignon, Marie-José; Zakaria, Nadia (2018) A review of the evidence for in vivo corneal endothelial regeneration. En: Survey of Ophthalmology. Vol. 63; No. 2; pp. 149-165; 0039-6257; Consultado en: 2020/12/14/16:17:25. Disponible en: http://www.sciencedirect.com/science/article/pii/S0039625717301054. Disponible en: 10.1016/j.survophthal.2017.07.004.
Powers, Alvin C.; Niswender, Kevin D.; Evans-Molina, Carmella; Jameson, J. Larry; Fauci, Anthony S.; Kasper, Dennis L.; Hauser, Stephen L.; Longo, Dan L.; Loscalzo, Joseph (2018) Diabetes Mellitus: Diagnosis, Classification, and Pathophysiology. En: Harrison's Principles of Internal Medicine. New York, NY: McGraw-Hill Education; Consultado en: 2020/12/14/17:13:54. Disponible en: accessmedicine.mhmedical.com/content.aspx?aid=1156520865.
Roszkowska, A. M.; Tringali, C. G.; Colosi, P.; Squeri, C. A.; Ferreri, G. (1999) Corneal endothelium evaluation in type I and type II diabetes mellitus. En: Ophthalmologica. Journal International D'ophtalmologie. International Journal of Ophthalmology. Zeitschrift Fur Augenheilkunde. Vol. 213; No. 4; pp. 258-261; 0030-3755; Disponible en: 10.1159/000027431.
Goldstein, Andrew S.; Janson, Ben J.; Skeie, Jessica M.; Ling, Jennifer J.; Greiner, Mark A. (2020) The effects of diabetes mellitus on the corneal endothelium: A review. En: Survey of Ophthalmology. Vol. 65; No. 4; pp. 438-450; 1879-3304; Disponible en: 10.1016/j.survophthal.2019.12.009.
Lin, Hung-Yu; Weng, Shao-Wen; Chang, Yen-Hsiang; Su, Yu-Jih; Chang, Chih-Min; Tsai, Chia-Jen; Shen, Feng-Chih; Chuang, Jiin-Haur; Lin, Tsu-Kung; Liou, Chia-Wei; Lin, Ching-Yi; Wang, Pei-Wen (2018) The Causal Role of Mitochondrial Dynamics in Regulating Insulin Resistance in Diabetes: Link through Mitochondrial Reactive Oxygen Species. En: Oxidative Medicine and Cellular Longevity. Consultado en: 2020/12/16/00:07:04. Disponible en: https://www.hindawi.com/journals/omcl/2018/7514383/.
Ottawa Hospital Research Institute. Consultado en: 2021/01/28/13:37:00. Disponible en: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp.
American Diabetes Association (2020) Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes—2020. En: Diabetes Care. Vol. 43; No. Supplement 1; pp. S98-S110; 0149-5992, 1935-5548; Consultado en: 2021/02/10/18:34:20. Disponible en: https://care.diabetesjournals.org/content/43/Supplement_1/S98. Disponible en: 10.2337/dc20-S009.
Roo, An-Katrien De; Wouters, Jasper; Govaere, Olivier; Foets, Beatrijs; Oord, Joost J. van den (2017) Identification of Circulating Fibrocytes and Dendritic Derivatives in Corneal Endothelium of Patients With Fuchs' Dystrophy. En: Investigative Ophthalmology & Visual Science. Vol. 58; No. 1; pp. 670-681; 1552-5783; Consultado en: 2021/02/12/16:01:13. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2600835. Disponible en: 10.1167/iovs.16-20880.
Anbar, Mohamed; Ammar, Hatem; Mahmoud, Ramadan A. (2016) Corneal Endothelial Morphology in Children with Type 1 Diabetes. En: Journal of Diabetes Research. Vol. 2016; 2314-6745; Consultado en: 2021/02/17/19:59:19. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4939174/. Disponible en: 10.1155/2016/7319047.
Calvo-Maroto, Ana M.; Cerviño, Alejandro; Perez-Cambrodí, Rafael J.; García-Lázaro, Santiago; Sanchis-Gimeno, Juan A. (2015) Quantitative corneal anatomy: evaluation of the effect of diabetes duration on the endothelial cell density and corneal thickness. En: Ophthalmic and Physiological Optics. Vol. 35; No. 3; pp. 293-298; 1475-1313; Consultado en: 2021/02/17/21:06:50. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1111/opo.12191. Disponible en: https://doi.org/10.1111/opo.12191.
Cankurtaran, Veysel; Tekin, Kemal (2019) Cumulative Effects of Smoking and Diabetes Mellitus on Corneal Endothelial Cell Parameters. En: Cornea. Vol. 38; No. 1; pp. 78-83; 1536-4798; Disponible en: 10.1097/ICO.0000000000001718.
Changes in Choroidal Thickness and Corneal Parameters in Diabetic Eyes. Consultado en: 2021/02/17/21:47:35. Disponible en: https://journals.sagepub.com/doi/abs/10.5301/ejo.5000677.
Baker, Peter; Fain, Pam; Kahles, Heinrich; Yu, Liping; Hutton, John; Wenzlau, Janet; Rewers, Marian; Badenhoop, Klaus; Eisenbarth, George (2012) Genetic Determinants of 21-Hydroxylase Autoantibodies Amongst Patients of the Type 1 Diabetes Genetics Consortium. En: The Journal of Clinical Endocrinology & Metabolism. Vol. 97; No. 8; pp. E1573-E1578; 0021-972X; Consultado en: 2021/02/19/15:37:51. Disponible en: https://doi.org/10.1210/jc.2011-2824. Disponible en: 10.1210/jc.2011-2824.
Morran, Michael P.; Vonberg, Andrew; Khadra, Anmar; Pietropaolo, Massimo (2015) Immunogenetics of Type 1 Diabetes Mellitus. En: Molecular aspects of medicine. Vol. 42; pp. 42-60; 0098-2997; Consultado en: 2021/02/19/18:08:27. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4548800/. Disponible en: 10.1016/j.mam.2014.12.004.
Iwata, M.; Kiritoshi, A.; Roat, M. I.; Yagihashi, A.; Thoft, R. A. (1992) Regulation of HLA class II antigen expression on cultured corneal epithelium by interferon-gamma. En: Investigative Ophthalmology & Visual Science. Vol. 33; No. 9; pp. 2714-2721; 0146-0404
Donnelly, J. J.; Li, W. Y.; Rockey, J. H.; Prendergast, R. A. (1985) Induction of class II (Ia) alloantigen expression on corneal endothelium in vivo and in vitro. En: Investigative Ophthalmology & Visual Science. Vol. 26; No. 4; pp. 575-580; 1552-5783; Consultado en: 2021/02/19/21:13:20. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2177064.
Young, E.; Stark, W. J.; Prendergast, R. A. (1985) Immunology of corneal allograft rejection: HLA-DR antigens on human corneal cells. En: Investigative Ophthalmology & Visual Science. Vol. 26; No. 4; pp. 571-574; 1552-5783; Consultado en: 2021/02/19/21:19:07. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2177105.
Zhang, Jie; McGhee, Charles N. J.; Patel, Dipika V. (2019) The Molecular Basis of Fuchs’ Endothelial Corneal Dystrophy. En: Molecular Diagnosis & Therapy. Vol. 23; No. 1; pp. 97-112; 1179-2000; Consultado en: 2021/02/19/21:22:54. Disponible en: https://doi.org/10.1007/s40291-018-0379-z. Disponible en: 10.1007/s40291-018-0379-z.
Treseler, P. A.; Foulks, G. N.; Sanfilippo, F. (1984) The expression of HLA antigens by cells in the human cornea. En: American Journal of Ophthalmology. Vol. 98; No. 6; pp. 763-772; 0002-9394; Disponible en: 10.1016/0002-9394(84)90696-2.
Crotti, Chiara; Selmi, Carlo; Shoenfeld, Yehuda; Meroni, Pier Luigi; Gershwin, M. Eric (2014) Chapter 46. En: Autoantibodies (Third Edition). pp. 385-389; San Diego: Elsevier; 978-0-444-56378-1; Consultado en: 2021/02/19/22:57:55. Disponible en: https://www.sciencedirect.com/science/article/pii/B9780444563781000460.
Lahdou, Imad; Engler, Christoph; Mehrle, Stefan; Daniel, Volker; Sadeghi, Mahmoud; Opelz, Gerhard; Terness, Peter (2014) Role of Human Corneal Endothelial Cells in T-Cell–Mediated Alloimmune Attack In Vitro. En: Investigative Ophthalmology & Visual Science. Vol. 55; No. 3; pp. 1213-1221; 1552-5783; Consultado en: 2021/02/20/01:15:36. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2189465. Disponible en: 10.1167/iovs.13-11930.
Whikehart (1995) The inhibition of sodium, potassium-stimulated ATPase and corneal swelling: the role played by polyols. En: Journal of the American Optometric Association. Vol. 66; No. 6; pp. 331-333; 0003-0244; Consultado en: 2021/02/20/02:01:22. Disponible en: https://europepmc.org/article/med/7673590.
Busted, N; Olsen, T; Schmitz, O (1981) Clinical observations on the corneal thickness and the corneal endothelium in diabetes mellitus. En: The British Journal of Ophthalmology. Vol. 65; No. 10; pp. 687-690; 0007-1161; Consultado en: 2021/02/20/02:10:18. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1039638/.
Zhang, Kaikai; Zhao, Liangliang; Zhu, Chao; Nan, Weijin; Ding, Xinfen; Dong, Yuchen; Zhao, Meisheng (2021) The effect of diabetes on corneal endothelium: a meta-analysis. En: BMC Ophthalmology. Vol. 21; No. 1; pp. 78 1471-2415; Consultado en: 2021/02/20/02:31:55. Disponible en: https://doi.org/10.1186/s12886-020-01785-3. Disponible en: 10.1186/s12886-020-01785-3.
Differences in corneal thickness and corneal endothelium related to duration in Diabetes | Eye. Consultado en: 2021/02/27/23:25:31. Disponible en: https://www.nature.com/articles/6701868.
Lee, J. S.; Oum, B. S.; Choi, H. Y.; Lee, J. E.; Cho, B. M. (2006) Differences in corneal thickness and corneal endothelium related to duration in diabetes. En: Eye (London, England). Vol. 20; No. 3; pp. 315-318; 0950-222X; Disponible en: 10.1038/sj.eye.6701868.
Tk, Yoo; E, Oh (2019) Diabetes mellitus is associated with dry eye syndrome: a meta-analysis. En: International Ophthalmology. Vol. 39; No. 11; pp. 2611-2620; 0165-5701, 1573-2630; Consultado en: 2021/03/01/19:32:48. Disponible en: https://europepmc.org/article/med/31065905. Disponible en: 10.1007/s10792-019-01110-y.
Stuard, Whitney L.; Titone, Rossella; Robertson, Danielle M. (2017) Tear Levels of Insulin-Like Growth Factor Binding Protein 3 Correlate With Subbasal Nerve Plexus Changes in Patients With Type 2 Diabetes Mellitus. En: Investigative Ophthalmology & Visual Science. Vol. 58; No. 14; pp. 6105-6112; 1552-5783; Consultado en: 2021/03/01/19:40:54. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2665837. Disponible en: 10.1167/iovs.17-22425.
Wu, Yu-Chieh; Buckner, Benjamin R.; Zhu, Meifang; Cavanagh, H. Dwight; Robertson, Danielle M. (2012) Elevated IGFBP3 levels in diabetic tears: a negative regulator of IGF-1 signaling in the corneal epithelium. En: The Ocular Surface. Vol. 10; No. 2; pp. 100-107; 1542-0124; Disponible en: 10.1016/j.jtos.2012.01.004.
Vujosevic, Stela; Muraca, Andrea; Alkabes, Micol; Villani, Edoardo; Cavarzeran, Fabiano; Rossetti, Luca; De Cillaʼ, Stefano (2019) Early microvascular and neural changes in patients with type 1 and type 2 diabetes mellitus without clinical signs of diabetic retinopathy. En: Retina (Philadelphia, Pa.). Vol. 39; No. 3; pp. 435-445; 1539-2864; Disponible en: 10.1097/IAE.0000000000001990.
Stem, Maxwell S.; Hussain, Munira; Lentz, Stephen I.; Raval, Nilesh; Gardner, Thomas W.; Pop-Busui, Rodica; Shtein, Roni M. (2014) Differential reduction in corneal nerve fiber length in patients with type 1 or type 2 diabetes mellitus. En: Journal of diabetes and its complications. Vol. 28; No. 5; pp. 658-661; 1056-8727; Consultado en: 2021/03/02/01:40:05. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4146399/. Disponible en: 10.1016/j.jdiacomp.2014.06.007.
Tang, Yizhen; Chen, Xinyi; Zhang, Xiaobo; Tang, Qiaomei; Liu, Siyu; Yao, Ke (2017) Clinical evaluation of corneal changes after phacoemulsification in diabetic and non-diabetic cataract patients, a systematic review and meta-analysis. En: Scientific Reports. Vol. 7; 2045-2322; Consultado en: 2021/03/05/11:34:31. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5658349/. Disponible en: 10.1038/s41598-017-14656-7.
Fong, Donald S.; Aiello, Lloyd; Gardner, Thomas W.; King, George L.; Blankenship, George; Cavallerano, Jerry D.; Ferris, Fredrick L.; Klein, Ronald (2004) Retinopathy in Diabetes. En: Diabetes Care. Vol. 27; No. suppl 1; pp. s84-s87; 0149-5992, 1935-5548; Consultado en: 2021/03/05/13:54:59. Disponible en: https://care.diabetesjournals.org/content/27/suppl_1/s84. Disponible en: 10.2337/diacare.27.2007.S84.
Costantini, E.; Touzeau, O.; Gaujoux, T.; Basli, E.; Kopito, R.; Borderie, V. M.; Laroche, L. (2009) Age-Related Changes in Central and Peripheral Corneal Thickness. En: Investigative Ophthalmology & Visual Science. Vol. 50; No. 13; pp. 5107-5107; 1552-5783; Consultado en: 2021/03/05/22:41:18. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2367476.
Abib, F. C.; Barreto Junior, J. (2001) Behavior of corneal endothelial density over a lifetime. En: Journal of Cataract and Refractive Surgery. Vol. 27; No. 10; pp. 1574-1578; 0886-3350; Disponible en: 10.1016/s0886-3350(01)00925-7.
Islam, Qamar Ul; Saeed, Muhammad Kamran; Mehboob, Mohammad Asim (2017) Age related changes in corneal morphological characteristics of healthy Pakistani eyes. En: Saudi Journal of Ophthalmology. Vol. 31; No. 2; pp. 86-90; 1319-4534; Consultado en: 2021/03/06/13:03:47. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5436377/. Disponible en: 10.1016/j.sjopt.2017.02.009.
Zhao, Di; Cho, Juhee; Kim, Myung Hun; Friedman, David S.; Guallar, Eliseo (2015) Diabetes, Fasting Glucose, and the Risk of Glaucoma: A Meta-analysis. En: Ophthalmology. Vol. 122; No. 1; pp. 72-78; 0161-6420, 1549-4713; Consultado en: 2021/03/12/09:06:51. Disponible en: https://www.aaojournal.org/article/S0161-6420(14)00697-6/abstract. Disponible en: 10.1016/j.ophtha.2014.07.051.
Doughty, M. J.; Zaman, M. L. (2000) Human corneal thickness and its impact on intraocular pressure measures: a review and meta-analysis approach. En: Survey of Ophthalmology. Vol. 44; No. 5; pp. 367-408; 0039-6257; Disponible en: 10.1016/s0039-6257(00)00110-7.
Margo, Jordan A.; Whiting, Martha F.; Brown, Clayton H.; Hoover, Caroline K.; Munir, Wuqaas M. (2017) The Effect of Chronic Pulmonary Disease and Mechanical Ventilation on Corneal Donor Endothelial Cell Density and Transplant Suitability. En: American Journal of Ophthalmology. Vol. 183; pp. 65-70; 0002-9394; Consultado en: 2021/03/15/16:23:06. Disponible en: https://www.sciencedirect.com/science/article/pii/S000293941730377X. Disponible en: 10.1016/j.ajo.2017.08.023.
Magdum, Renu M.; Mutha, Neha; Maheshgauri, Rupali (2013) A study of corneal endothelial changes in soft contact lens wearers using non-contact specular microscopy. En: Medical Journal of Dr. D.Y. Patil University. Vol. 6; No. 3; pp. 245 0975-2870; Consultado en: 2021/03/15/16:59:08. Disponible en: https://www.mjdrdypu.org/article.asp?issn=0975-2870;year=2013;volume=6;issue=3;spage=245;epage=249;aulast=Magdum;type=0. Disponible en: 10.4103/0975-2870.114645.
Corneal endothelial cell density in glaucoma. Consultado en: 2021/03/15/17:14:55. Disponible en: https://europepmc.org/article/med/9143804.
Kheirkhah, Ahmad; Saboo, Ujwala S.; Abud, Tulio B.; Dohlman, Thomas H.; Arnoldner, Michael A.; Hamrah, Pedram; Dana, Reza (2015) Reduced Corneal Endothelial Cell Density in Patients with Dry Eye Disease. En: American journal of ophthalmology. Vol. 159; No. 6; pp. 1022 Consultado en: 2021/03/15/18:12:02. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4427236/. Disponible en: 10.1016/j.ajo.2015.03.011.
Konstantopoulos, Spyros (2011) Fixed effects and variance components estimation in three-level meta-analysis. En: Research Synthesis Methods. Vol. 2; No. 1; pp. 61-76; 1759-2879; Disponible en: 10.1002/jrsm.35.
Viechtbauer, Wolfgang (2010) Conducting Meta-Analyses in R with the metafor Package. En: Journal of Statistical Software. Vol. 36; No. 1; pp. 1-48; 1548-7660; Consultado en: 2021/03/26/22:53:47. Disponible en: https://www.jstatsoft.org/index.php/jss/article/view/v036i03. Disponible en: 10.18637/jss.v036.i03.
R Core Team (2020); R: A language and environment for statistical computing. R Foundation for Statistical Computing. Consultado en: 2021/03/26/23:08:22. Disponible en: https://www.eea.europa.eu/data-and-maps/indicators/oxygen-consuming-substances-in-rivers/r-development-core-team-2006.
Kudva, Ajay A.; Lasrado, Adeline S.; Hegde, Sudhir; Kadri, Rajani; Devika, P.; Shetty, Akansha (2020) Corneal endothelial cell changes in diabetics versus age group matched nondiabetics after manual small incision cataract surgery. En: Indian Journal of Ophthalmology. Vol. 68; No. 1; pp. 72 0301-4738; Consultado en: 2021/03/29/10:13:00. Disponible en: https://www.ijo.in/article.asp?issn=0301-4738;year=2020;volume=68;issue=1;spage=72;epage=76;aulast=Kudva;type=0. Disponible en: 10.4103/ijo.IJO_406_19.
Gambato, Catia; Longhin, Evelyn; Catania, Anton Giulio; Lazzarini, Daniela; Parrozzani, Raffaele; Midena, Edoardo (2015) Aging and corneal layers: an in vivo corneal confocal microscopy study. En: Graefe's Archive for Clinical and Experimental Ophthalmology. Vol. 253; No. 2; pp. 267-275; 1435-702X; Consultado en: 2021/04/03/12:31:21. Disponible en: https://doi.org/10.1007/s00417-014-2812-2. Disponible en: 10.1007/s00417-014-2812-2.
Niederer, R. L.; Perumal, D.; Sherwin, T.; McGhee, C. N. J. (2007) Age-related differences in the normal human cornea: a laser scanning in vivo confocal microscopy study. En: The British Journal of Ophthalmology. Vol. 91; No. 9; pp. 1165-1169; 0007-1161; Disponible en: 10.1136/bjo.2006.112656.
Vassilev, Vassil S.; Mandai, Michiko; Yonemura, Shigenobu; Takeichi, Masatoshi (2012) Loss of N-Cadherin from the Endothelium Causes Stromal Edema and Epithelial Dysgenesis in the Mouse Cornea. En: Investigative Ophthalmology & Visual Science. Vol. 53; No. 11; pp. 7183-7193; 1552-5783; Consultado en: 2021/04/03/17:34:44. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2127685. Disponible en: 10.1167/iovs.12-9949.
Wang, Yan; Zhang, Hong-Tao; Su, Xing-Li; Deng, Xiu-Ling; Yuan, Bing-Xiang; Zhang, Wei; Wang, Xin-Feng; Yang, Yu-Bai (2010) Experimental diabetes mellitus down-regulates large-conductance Ca2+-activated K+ channels in cerebral artery smooth muscle and alters functional conductance. En: Current Neurovascular Research. Vol. 7; No. 2; pp. 75-84; 1875-5739; Disponible en: 10.2174/156720210791184925.
Guéguinou, Maxime; Chantôme, Aurélie; Fromont, Gaëlle; Bougnoux, Philippe; Vandier, Christophe; Potier-Cartereau, Marie (2014) KCa and Ca2+ channels: The complex thought. En: Biochimica et Biophysica Acta (BBA). Calcium Signaling in Health and Disease; Vol. 1843; No. 10; pp. 2322-2333; 0167-4889; Consultado en: 2021/04/05/10:39:10. Disponible en: https://www.sciencedirect.com/science/article/pii/S0167488914000834. Disponible en: 10.1016/j.bbamcr.2014.02.019.
Hage, Travis A.; Salkoff, Lawrence (2012) Sodium-Activated Potassium Channels Are Functionally Coupled to Persistent Sodium Currents. En: The Journal of Neuroscience. Vol. 32; No. 8; pp. 2714-2721; 0270-6474; Consultado en: 2021/04/05/14:03:58. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3319674/. Disponible en: 10.1523/JNEUROSCI.5088-11.2012.
Yi, Fu; Ling, Tian-You; Lu, Tong; Wang, Xiao-Li; Li, Jingchao; Claycomb, William C.; Shen, Win-Kuang; Lee, Hon-Chi (2015) Down-regulation of the Small Conductance Calcium-activated Potassium Channels in Diabetic Mouse Atria*. En: Journal of Biological Chemistry. Vol. 290; No. 11; pp. 7016-7026; 0021-9258; Consultado en: 2021/04/05/20:57:36. Disponible en: https://www.sciencedirect.com/science/article/pii/S0021925820767797. Disponible en: 10.1074/jbc.M114.607952.
Zhao, Li-Mei; Wang, Yan; Ma, Xiao-Zhen; Wang, Nan-Ping; Deng, Xiu-Ling (2014) Advanced glycation end products impair K(Ca)3.1-and K(Ca)2.3-mediated vasodilatation via oxidative stress in rat mesenteric arteries. En: Pflugers Archiv: European Journal of Physiology. Vol. 466; No. 2; pp. 307-317; 1432-2013; Disponible en: 10.1007/s00424-013-1324-y.
Gagnon, M. M.; Boisjoly, H. M.; Brunette, I.; Charest, M.; Amyot, M. (1997) Corneal endothelial cell density in glaucoma. En: Cornea. Vol. 16; No. 3; pp. 314-318; 0277-3740
Tarazona, Sonia; Furió-Tarí, Pedro; Turrà, David; Pietro, Antonio Di; Nueda, María José; Ferrer, Alberto; Conesa, Ana (2015) Data quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package. En: Nucleic Acids Research. Vol. 43; No. 21; pp. e140-e140; 0305-1048; Consultado en: 2021/04/24/22:38:09. Disponible en: https://doi.org/10.1093/nar/gkv711. Disponible en: 10.1093/nar/gkv711.
DAVID Functional Annotation Bioinformatics Microarray Analysis. Consultado en: 2021/04/24/23:07:31. Disponible en: https://david.ncifcrf.gov/.
Yu, Tao; Deng, Chunyu; Wu, Ruobin; Guo, Huiming; Zheng, Shaoyi; Yu, Xiyong; Shan, Zhixin; Kuang, Sujuan; Lin, Qiuxiong (2012) Decreased expression of small-conductance Ca2+-activated K+ channels SK1 and SK2 in human chronic atrial fibrillation. En: Life Sciences. Vol. 90; No. 5; pp. 219-227; 0024-3205; Consultado en: 2021/04/25/00:22:49. Disponible en: https://www.sciencedirect.com/science/article/pii/S0024320511005704. Disponible en: 10.1016/j.lfs.2011.11.008.
Bonito, B.; Sauter, D. R. P.; Schwab, A.; Djamgoz, M. B. A.; Novak, I. (2016) KCa3.1 (IK) modulates pancreatic cancer cell migration, invasion and proliferation: anomalous effects on TRAM-34. En: Pflügers Archiv. Vol. 468; No. 11; pp. 1865-1875; 1432-2013; Consultado en: 2021/04/25/01:36:47. Disponible en: https://doi.org/10.1007/s00424-016-1891-9. Disponible en: 10.1007/s00424-016-1891-9.
Kopec, Ashley M.; Rivera, Phillip D.; Lacagnina, Michael J.; Hanamsagar, Richa; Bilbo, Staci D. (2017) Optimized solubilization of TRIzol-precipitated protein permits Western blotting analysis to maximize data available from brain tissue. En: Journal of Neuroscience Methods. Vol. 280; pp. 64-76; 0165-0270; Consultado en: 2021/04/25/02:12:42. Disponible en: https://www.sciencedirect.com/science/article/pii/S0165027017300389. Disponible en: 10.1016/j.jneumeth.2017.02.002.
Ion Transport Function of SLC4A11 in Corneal Endothelium | IOVS | ARVO Journals. Consultado en: 2021/05/09/22:00:06. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2189793.
Jalimarada, Supriya S.; Ogando, Diego G.; Vithana, Eranga N.; Bonanno, Joseph A. (2013) Ion Transport Function of SLC4A11 in Corneal Endothelium. En: Investigative Ophthalmology & Visual Science. Vol. 54; No. 6; pp. 4330-4340; 1552-5783; Consultado en: 2021/05/09/22:00:32. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2189793. Disponible en: 10.1167/iovs.13-11929.
Pedarzani, P.; Stocker, M. (2008) Molecular and cellular basis of small--and intermediate-conductance, calcium-activated potassium channel function in the brain. En: Cellular and molecular life sciences: CMLS. Vol. 65; No. 20; pp. 3196-3217; 1420-682X; Disponible en: 10.1007/s00018-008-8216-x.
SK2 and SK3 Expression Differentially Affect Firing Frequency and Precision in Dopamine Neurons. Consultado en: 2021/05/09/22:12:02. Disponible en: https://www-ncbi-nlm-nih-gov.ez.urosario.edu.co/pmc/articles/PMC3383402/.
Deignan, Jason; Luján, Rafael; Bond, Chris; Riegel, Arthur; Watanabe, Masahiko; Williams, John T.; Maylie, James; Adelman, John P. (2012) SK2 and SK3 Expression Differentially Affect Firing Frequency and Precision in Dopamine Neurons. En: Neuroscience. Vol. 217; pp. 67-76; 0306-4522; Consultado en: 2021/05/09/22:12:04. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3383402/. Disponible en: 10.1016/j.neuroscience.2012.04.053.
Gu, Mingxia; Zhu, Yanrong; Yin, Xiaorong; Zhang, Dai-Min (2018) Small-conductance Ca 2+-activated K + channels: insights into their roles in cardiovascular disease. En: Experimental & Molecular Medicine. Vol. 50; No. 4; pp. 1-7; 2092-6413; Consultado en: 2021/05/09/22:24:50. Disponible en: https://www.nature.com/articles/s12276-018-0043-z. Disponible en: 10.1038/s12276-018-0043-z.
Lu, Ling; Timofeyev, Valeriy; Li, Ning; Rafizadeh, Sassan; Singapuri, Anil; Harris, Todd R.; Chiamvimonvat, Nipavan (2009) α-Actinin2 cytoskeletal protein is required for the functional membrane localization of a Ca2+-activated K+ channel (SK2 channel). En: Proceedings of the National Academy of Sciences of the United States of America. Vol. 106; No. 43; pp. 18402-18407; 0027-8424; Consultado en: 2021/05/09/22:46:35. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2775294/. Disponible en: 10.1073/pnas.0908207106.
Kim, Tae Yun; Terentyeva, Radmila; Roder, Karim H. F.; Li, Weiyan; Liu, Man; Greener, Ian; Hamilton, Shanna; Polina, Iuliia; Murphy, Kevin R.; Clements, Richard T.; Dudley, Samuel C.; Koren, Gideon; Choi, Bum-Rak; Terentyev, Dmitry (2017) SK channel enhancers attenuate Ca2+-dependent arrhythmia in hypertrophic hearts by regulating mito-ROS-dependent oxidation and activity of RyR. En: Cardiovascular Research. Vol. 113; No. 3; pp. 343-353; 0008-6363; Consultado en: 2021/05/09/22:48:47. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5852621/. Disponible en: 10.1093/cvr/cvx005.
Takai, Jun; Santu, Alexandra; Zheng, Haifeng; Koh, Sang Don; Ohta, Masanori; Filimban, Linda M.; Lemaître, Vincent; Teraoka, Ryutaro; Jo, Hanjoong; Miura, Hiroto (2013) Laminar shear stress upregulates endothelial Ca2+-activated K+ channels KCa2.3 and KCa3.1 via a Ca2+/calmodulin-dependent protein kinase kinase/Akt/p300 cascade. En: American Journal of Physiology-Heart and Circulatory Physiology. Vol. 305; No. 4; pp. H484-H493; 0363-6135; Consultado en: 2021/05/09/23:17:04. Disponible en: https://journals.physiology.org/doi/full/10.1152/ajpheart.00642.2012. Disponible en: 10.1152/ajpheart.00642.2012.
Ca2+-activated K+ channels in human melanoma cells are up-regulated by hypoxia involving hypoxia-inducible factor-1α and the von Hippel-Lindau protein. Consultado en: 2021/05/09/23:19:41. Disponible en: https://physoc.onlinelibrary.wiley.com/doi/full/10.1113/jphysiol.2005.096818.
D’Arcangelo, Daniela; Scatozza, Francesca; Giampietri, Claudia; Marchetti, Paolo; Facchiano, Francesco; Facchiano, Antonio (2019) Ion Channel Expression in Human Melanoma Samples: In Silico Identification and Experimental Validation of Molecular Targets. En: Cancers. Vol. 11; No. 4; pp. 446 Consultado en: 2021/05/09/23:21:47. Disponible en: https://www.mdpi.com/2072-6694/11/4/446. Disponible en: 10.3390/cancers11040446.
Feranchak, Andrew P.; Doctor, R. Brian; Troetsch, Marlyn; Brookman, Kathryn; Johnson, Sylene M.; Fitz, J. Gregory (2004) Calcium-dependent regulation of secretion in biliary epithelial cells: the role of apamin-sensitive SK channels. En: Gastroenterology. Vol. 127; No. 3; pp. 903-913; 0016-5085; Disponible en: 10.1053/j.gastro.2004.06.047.
Chantome, Aurelie; Girault, Alban; Potier, Marie; Collin, Christine; Vaudin, Pascal; Pagès, Jean-Christophe; Vandier, Christophe; Joulin, Virginie (2009) KCa2.3 channel-dependent hyperpolarization increases melanoma cell motility. En: Experimental Cell Research. Vol. 315; No. 20; pp. 3620-3630; 1090-2422; Disponible en: 10.1016/j.yexcr.2009.07.021.
Liebau, Stefan; Vaida, Bianca; Proepper, Christian; Grissmer, Stephan; Storch, Alexander; Boeckers, Tobias M.; Dietl, Paul; Wittekindt, Oliver H. (2007) Formation of cellular projections in neural progenitor cells depends on SK3 channel activity. En: Journal of Neurochemistry. Vol. 101; No. 5; pp. 1338-1350; 1471-4159; Consultado en: 2021/05/09/23:30:50. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1471-4159.2006.04437.x. Disponible en: https://doi.org/10.1111/j.1471-4159.2006.04437.x.
Potier, Marie; Tran, Truong An; Chantome, Aurelie; Girault, Alban; Joulin, Virginie; Bougnoux, Philippe; Vandier, Christophe; Pierre, Fabrice (2010) Altered SK3/KCa2.3-mediated migration in adenomatous polyposis coli (Apc) mutated mouse colon epithelial cells. En: Biochemical and Biophysical Research Communications. Vol. 397; No. 1; pp. 42-47; 1090-2104; Disponible en: 10.1016/j.bbrc.2010.05.046.
Koegel, Heidi; Kaesler, Susanne; Burgstahler, Ralf; Werner, Sabine; Alzheimer, Christian (2003) Unexpected down-regulation of the hIK1 Ca2+-activated K+ channel by its opener 1-ethyl-2-benzimidazolinone in HaCaT keratinocytes. Inverse effects on cell growth and proliferation. En: The Journal of Biological Chemistry. Vol. 278; No. 5; pp. 3323-3330; 0021-9258; Disponible en: 10.1074/jbc.M208914200.
Kaushal, Vikas; Koeberle, Paulo D.; Wang, Yimin; Schlichter, Lyanne C. (2007) The Ca2+-activated K+ channel KCNN4/KCa3.1 contributes to microglia activation and nitric oxide-dependent neurodegeneration. En: The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. Vol. 27; No. 1; pp. 234-244; 1529-2401; Disponible en: 10.1523/JNEUROSCI.3593-06.2007.
Lauf, Peter K.; Misri, Sandeep; Chimote, Ameet A.; Adragna, Norma C. (2008) Apparent intermediate K conductance channel hyposmotic activation in human lens epithelial cells. En: American Journal of Physiology-Cell Physiology. Vol. 294; No. 3; pp. C820-C832; 0363-6143; Consultado en: 2021/05/09/23:45:14. Disponible en: http://journals.physiology.org/doi/full/10.1152/ajpcell.00375.2007. Disponible en: 10.1152/ajpcell.00375.2007.
Differential role of IK and BK potassium channels as mediators of intrinsic and extrinsic apoptotic cell death. Consultado en: 2021/05/09/23:45:45. Disponible en: https://pubmed-ncbi-nlm-nih-gov.ez.urosario.edu.co/22992678/.
K ca 3.1 Activation Via P2y 2 Purinergic Receptors Promotes Human Ovarian Cancer Cell (Skov-3) Migration. Consultado en: 2021/05/09/23:46:41. Disponible en: https://pubmed-ncbi-nlm-nih-gov.ez.urosario.edu.co/28659615/.
Robles-Martínez, L.; Garay, E.; Martel-Gallegos, M. G.; Cisneros-Mejorado, A.; Pérez-Montiel, D.; Lara, A.; Arellano, R. O. (2017) Kca3.1 Activation Via P2y2 Purinergic Receptors Promotes Human Ovarian Cancer Cell (Skov-3) Migration. En: Scientific Reports. Vol. 7; No. 1; pp. 4340 2045-2322; Disponible en: 10.1038/s41598-017-04292-6.
Sciaccaluga, Miriam; Fioretti, Bernard; Catacuzzeno, Luigi; Pagani, Francesca; Bertollini, Cristina; Rosito, Maria; Catalano, Myriam; D'Alessandro, Giuseppina; Santoro, Antonio; Cantore, Giampaolo; Ragozzino, Davide; Castigli, Emilia; Franciolini, Fabio; Limatola, Cristina (2010) CXCL12-induced glioblastoma cell migration requires intermediate conductance Ca2+-activated K+ channel activity. En: American Journal of Physiology-Cell Physiology. Vol. 299; No. 1; pp. C175-C184; 0363-6143; Consultado en: 2021/05/09/23:52:49. Disponible en: http://journals.physiology.org/doi/full/10.1152/ajpcell.00344.2009. Disponible en: 10.1152/ajpcell.00344.2009.
Romanenko, Victor G; Nakamoto, Tetsuji; Srivastava, Alaka; Begenisich, Ted; Melvin, James E (2007) Regulation of membrane potential and fluid secretion by Ca2+-activated K+ channels in mouse submandibular glands. En: The Journal of Physiology. Vol. 581; No. Pt 2; pp. 801-817; 0022-3751; Consultado en: 2021/05/09/23:53:45. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2075181/. Disponible en: 10.1113/jphysiol.2006.127498.
Steudel, Friederike A.; Mohr, Corinna J.; Stegen, Benjamin; Nguyen, Hoang Y.; Barnert, Andrea; Steinle, Marc; Beer-Hammer, Sandra; Koch, Pierre; Lo, Wing-Yee; Schroth, Werner; Hoppe, Reiner; Brauch, Hiltrud; Ruth, Peter; Huber, Stephan M.; Lukowski, Robert (2017) SK4 channels modulate Ca2+ signalling and cell cycle progression in murine breast cancer. En: Molecular Oncology. Vol. 11; No. 9; pp. 1172-1188; 1878-0261; Disponible en: 10.1002/1878-0261.12087.
Trinh, Nguyen Thu Ngan; Privé, Anik; Maillé, Emilie; Noël, Josette; Brochiero, Emmanuelle (2008) EGF and K+ channel activity control normal and cystic fibrosis bronchial epithelia repair. En: American Journal of Physiology. Lung Cellular and Molecular Physiology. Vol. 295; No. 5; pp. L866-880; 1040-0605; Disponible en: 10.1152/ajplung.90224.2008.
Vigneault, Patrick; Naud, Patrice; Qi, Xiaoyan; Xiao, Jiening; Villeneuve, Louis; Davis, Darryl R.; Nattel, Stanley (2018) Calcium-dependent potassium channels control proliferation of cardiac progenitor cells and bone marrow-derived mesenchymal stem cells. En: The Journal of Physiology. Vol. 596; No. 12; pp. 2359-2379; 1469-7793; Disponible en: 10.1113/JP275388.
McFerrin, Michael B.; Turner, Kathryn L.; Cuddapah, Vishnu Anand; Sontheimer, Harald (2012) Differential role of IK and BK potassium channels as mediators of intrinsic and extrinsic apoptotic cell death. En: American Journal of Physiology. Cell Physiology. Vol. 303; No. 10; pp. C1070-1078; 1522-1563; Disponible en: 10.1152/ajpcell.00040.2012.
Tejada, Maria A.; Hashem, Nadia; Calloe, Kirstine; Klaerke, Dan A. (2017) Heteromeric Slick/Slack K+ channels show graded sensitivity to cell volume changes. En: PloS One. Vol. 12; No. 2; pp. e0169914 1932-6203; Disponible en: 10.1371/journal.pone.0169914.
Tajima, Nobuyoshi; Schönherr, Kristina; Niedling, Susanna; Kaatz, Martin; Kanno, Hiroshi; Schönherr, Roland; Heinemann, Stefan H (2006) Ca2+-activated K+ channels in human melanoma cells are up-regulated by hypoxia involving hypoxia-inducible factor-1α and the von Hippel-Lindau protein. En: The Journal of Physiology. Vol. 571; No. Pt 2; pp. 349-359; 0022-3751; Consultado en: 2021/05/10/00:11:07. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1796787/. Disponible en: 10.1113/jphysiol.2005.096818.
Wang, Jun; Morishima, Shigeru; Okada, Yasunobu (2003) IK channels are involved in the regulatory volume decrease in human epithelial cells. En: American Journal of Physiology-Cell Physiology. Vol. 284; No. 1; pp. C77-C84; 0363-6143; Consultado en: 2021/05/10/01:37:22. Disponible en: http://journals.physiology.org/doi/full/10.1152/ajpcell.00132.2002. Disponible en: 10.1152/ajpcell.00132.2002.
Millership, Joanne E.; Devor, Daniel C.; Hamilton, Kirk L.; Balut, Corina M.; Bruce, Jason I. E.; Fearon, Ian M. (2010) Calcium-activated K+ channels increase cell proliferation independent of K+ conductance. En: American Journal of Physiology-Cell Physiology. Vol. 300; No. 4; pp. C792-C802; 0363-6143; Consultado en: 2021/05/10/01:48:02. Disponible en: https://journals.physiology.org/doi/full/10.1152/ajpcell.00274.2010. Disponible en: 10.1152/ajpcell.00274.2010.
Sundelacruz, Sarah; Levin, Michael; Kaplan, David L. (2009) Role of Membrane Potential in the Regulation of Cell Proliferation and Differentiation. En: Stem Cell Reviews and Reports. Vol. 5; No. 3; pp. 231-246; 1558-6804; Consultado en: 2021/05/10/02:00:14. Disponible en: https://doi.org/10.1007/s12015-009-9080-2. Disponible en: 10.1007/s12015-009-9080-2.
Barrett, K. E.; Keely, S. J. (2000) Chloride secretion by the intestinal epithelium: molecular basis and regulatory aspects. En: Annual Review of Physiology. Vol. 62; pp. 535-572; 0066-4278; Disponible en: 10.1146/annurev.physiol.62.1.535.
Bernard, K.; Bogliolo, S.; Soriani, O.; Ehrenfeld, J. (2003) Modulation of calcium-dependent chloride secretion by basolateral SK4-like channels in a human bronchial cell line. En: The Journal of Membrane Biology. Vol. 196; No. 1; pp. 15-31; 0022-2631; Disponible en: 10.1007/s00232-003-0621-3.
Reid, Brian; Zhao, Min (2014) The Electrical Response to Injury: Molecular Mechanisms and Wound Healing. En: Advances in Wound Care. Vol. 3; No. 2; pp. 184-201; 2162-1918; Disponible en: 10.1089/wound.2013.0442.
Justet, Cristian; Chifflet, Silvia; Hernandez, Julio A. (2019) Calcium Oscillatory Behavior and Its Possible Role during Wound Healing in Bovine Corneal Endothelial Cells in Culture. En: BioMed Research International. Vol. 2019; pp. e8647121 2314-6133; Consultado en: 2021/05/10/09:50:27. Disponible en: https://www.hindawi.com/journals/bmri/2019/8647121/. Disponible en: 10.1155/2019/8647121.
Watsky, M. A. (1995) Nonselective cation channel activation during wound healing in the corneal endothelium. En: The American Journal of Physiology. Vol. 268; No. 5 Pt 1; pp. C1179-1185; 0002-9513; Disponible en: 10.1152/ajpcell.1995.268.5.C1179.
Vieira, Ana Carolina; Reid, Brian; Cao, Lin; Mannis, Mark J.; Schwab, Ivan R.; Zhao, Min (2011) Ionic Components of Electric Current at Rat Corneal Wounds. En: PLOS ONE. Vol. 6; No. 2; pp. e17411 1932-6203; Consultado en: 2021/05/10/09:59:58. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0017411. Disponible en: 10.1371/journal.pone.0017411.
Yu, Zhihua; Dou, Fangfang; Wang, Yanxia; Hou, Lina; Chen, Hongzhuan (2018) Ca2+-dependent endoplasmic reticulum stress correlation with astrogliosis involves upregulation of KCa3.1 and inhibition of AKT/mTOR signaling. En: Journal of Neuroinflammation. Vol. 15; No. 1; pp. 316 1742-2094; Disponible en: 10.1186/s12974-018-1351-x.
Zundler, Sebastian; Caioni, Massimiliano; Müller, Martina; Strauch, Ulrike; Kunst, Claudia; Woelfel, Gisela (2016) K+ Channel Inhibition Differentially Regulates Migration of Intestinal Epithelial Cells in Inflamed vs. Non-Inflamed Conditions in a PI3K/Akt-Mediated Manner. En: PLOS ONE. Vol. 11; No. 1; pp. e0147736 1932-6203; Consultado en: 2021/05/10/12:56:32. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0147736. Disponible en: 10.1371/journal.pone.0147736.
Bhattacharjee, Arin; Joiner, William J.; Wu, Meilin; Yang, Youshan; Sigworth, Fred J.; Kaczmarek, Leonard K. (2003) Slick (Slo2.1), a Rapidly-Gating Sodium-Activated Potassium Channel Inhibited by ATP. En: Journal of Neuroscience. Vol. 23; No. 37; pp. 11681-11691; 0270-6474, 1529-2401; Consultado en: 2021/05/10/14:23:53. Disponible en: https://www.jneurosci.org/content/23/37/11681. Disponible en: 10.1523/JNEUROSCI.23-37-11681.2003.
Bhattacharjee, Arin; von Hehn, Christian A. A.; Mei, Xiaofeng; Kaczmarek, Leonard K. (2005) Localization of the Na+-activated K+ channel Slick in the rat central nervous system. En: The Journal of Comparative Neurology. Vol. 484; No. 1; pp. 80-92; 0021-9967; Disponible en: 10.1002/cne.20462.
Tejada, Maria A.; Stople, Kathleen; Bomholtz, Sofia Hammami; Meinild, Anne-Kristine; Poulsen, Asser Nyander; Klaerke, Dan A. (2014) Cell Volume Changes Regulate Slick (Slo2.1), but Not Slack (Slo2.2) K+ Channels. En: PLOS ONE. Vol. 9; No. 10; pp. e110833 1932-6203; Consultado en: 2021/05/10/14:31:38. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0110833. Disponible en: 10.1371/journal.pone.0110833.
Tomasello, Danielle L.; Hurley, Edward; Wrabetz, Lawrence; Bhattacharjee, Arin (2017) Slick (Kcnt2) Sodium-Activated Potassium Channels Limit Peptidergic Nociceptor Excitability and Hyperalgesia. En: Journal of Experimental Neuroscience. Vol. 11; pp. 1179069517726996 1179-0695; Disponible en: 10.1177/1179069517726996.
Smith, Charles O.; Wang, Yves T.; Nadtochiy, Sergiy M.; Miller, James H.; Jonas, Elizabeth A.; Dirksen, Robert T.; Nehrke, Keith; Brookes, Paul S. (2018) Cardiac metabolic effects of KNa1.2 channel deletion and evidence for its mitochondrial localization. En: FASEB journal: official publication of the Federation of American Societies for Experimental Biology. pp. fj201800139R 1530-6860; Disponible en: 10.1096/fj.201800139R.
KCNMA1 Encoded Cardiac BK Channels Afford Protection against Ischemia-Reperfusion Injury. Consultado en: 2021/05/10/19:11:05. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0103402.
Gribkoff, Valentin K.; Starrett, John E.; Dworetzky, Steven I. (2001) Maxi-K Potassium Channels: Form, Function, and Modulation of a Class of Endogenous Regulators of Intracellular Calcium. En: The Neuroscientist. Vol. 7; No. 2; pp. 166-177; 1073-8584; Consultado en: 2021/05/10/19:38:33. Disponible en: https://doi.org/10.1177/107385840100700211. Disponible en: 10.1177/107385840100700211.
Toro, Ligia; Li, Min; Zhang, Zhu; Singh, Harpreet; Wu, Yong; Stefani, Enrico (2014) MaxiK channel and cell signalling. En: Pflugers Archiv : European journal of physiology. Vol. 466; No. 5; pp. 875-886; 0031-6768; Consultado en: 2021/05/10/19:50:03. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3969412/. Disponible en: 10.1007/s00424-013-1359-0.
Amano, Shiro; Kaji, Yuichi; Mimura, Tatsuya (2010) Biology of corneal endothelial cells in vivo and in vitro. En: Japanese Journal of Ophthalmology. Vol. 54; No. 3; pp. 211-214; 1613-2246; Disponible en: 10.1007/s10384-010-0799-8.
Dawczynski, Jens; Franke, Sibylle; Blum, Marcus; Kasper, Michael; Stein, Günter; Strobel, Jürgen (2002) Advanced glycation end-products in corneas of patients with keratoconus. En: Graefe's Archive for Clinical and Experimental Ophthalmology = Albrecht Von Graefes Archiv Fur Klinische Und Experimentelle Ophthalmologie. Vol. 240; No. 4; pp. 296-301; 0721-832X; Disponible en: 10.1007/s00417-002-0445-3.
Kase, Satoru; Ishida, Susumu; Rao, Narsing Adupa (2011) Immunolocalization of advanced glycation end products in human diabetic eyes: an immunohistochemical study. En: Journal of Diabetes Mellitus. Vol. 1; No. 3; pp. 57-62; Consultado en: 2021/05/10/22:24:16. Disponible en: http://www.scirp.org/Journal/Paperabs.aspx?paperid=7107. Disponible en: 10.4236/jdm.2011.13009.
Satoru, Kase; Susumu, Ishida; Narsing Adupa, Rao (2011) Immunolocalization of advanced glycation end products in human diabetic eyes: an immunohistochemical study. En: Journal of Diabetes Mellitus. Vol. 2011; 2160-5858; Consultado en: 2021/05/10/22:25:41. Disponible en: http://www.scirp.org/journal/PaperInformation.aspx?PaperID=7107. Disponible en: 10.4236/jdm.2011.13009.
Price, Marianne O.; Thompson, Robert W.; Price, Francis W. (2003) Risk factors for various causes of failure in initial corneal grafts. En: Archives of Ophthalmology (Chicago, Ill.: 1960). Vol. 121; No. 8; pp. 1087-1092; 0003-9950; Disponible en: 10.1001/archopht.121.8.1087.
Yu, Alice L.; Kaiser, Michaela; Schaumberger, Markus; Messmer, Elisabeth; Kook, Daniel; Welge-Lussen, Ulrich (2014) Donor-related risk factors and preoperative recipient-related risk factors for graft failure. En: Cornea. Vol. 33; No. 11; pp. 1149-1156; 1536-4798; Disponible en: 10.1097/ICO.0000000000000225.
Price, Marianne O.; Lisek, Marek; Feng, Matthew T.; Price, Francis W. (2017) Effect of Donor and Recipient Diabetes Status on Descemet Membrane Endothelial Keratoplasty Adherence and Survival. En: Cornea. Vol. 36; No. 10; pp. 1184-1188; 1536-4798; Disponible en: 10.1097/ICO.0000000000001305.
Zhao, Han; He, Yan; Ren, Yue-Rong; Chen, Bai-Hua (2019) Corneal alteration and pathogenesis in diabetes mellitus. En: International Journal of Ophthalmology. Vol. 12; No. 12; pp. 1939-1950; 2222-3959; Consultado en: 2021/05/10/23:27:13. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6901883/. Disponible en: 10.18240/ijo.2019.12.17.
ImageJ. Consultado en: 2021/05/11/09:28:05. Disponible en: https://imagej-nih-gov.ez.urosario.edu.co/ij/.
Ramteke, Pranay; Deb, Ankita; Shepal, Varsha; Bhat, Manoj Kumar (2019) Hyperglycemia Associated Metabolic and Molecular Alterations in Cancer Risk, Progression, Treatment, and Mortality. En: Cancers. Vol. 11; No. 9; 2072-6694; Consultado en: 2021/05/12/10:46:09. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6770430/. Disponible en: 10.3390/cancers11091402.
Lopez, Rebecca; Arumugam, Arunkumar; Joseph, Riya; Monga, Kanika; Boopalan, Thiyagarajan; Agullo, Pamela; Gutierrez, Christina; Nandy, Sushmita; Subramani, Ramadevi; Rosa, Jose Manuel de la; Lakshmanaswamy, Rajkumar (2013) Hyperglycemia Enhances the Proliferation of Non-Tumorigenic and Malignant Mammary Epithelial Cells through Increased leptin/IGF1R Signaling and Activation of AKT/mTOR. En: PLOS ONE. Vol. 8; No. 11; pp. e79708 1932-6203; Consultado en: 2021/05/12/10:57:24. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0079708. Disponible en: 10.1371/journal.pone.0079708.
Li, Wenjie; Zhang, Xuehui; Sang, Hui; Zhou, Ying; Shang, Chunyu; Wang, Yongqing; Zhu, Hong (2019) Effects of hyperglycemia on the progression of tumor diseases. En: Journal of Experimental & Clinical Cancer Research. Vol. 38; No. 1; pp. 327 1756-9966; Consultado en: 2021/05/12/11:32:00. Disponible en: https://doi.org/10.1186/s13046-019-1309-6. Disponible en: 10.1186/s13046-019-1309-6.
Wolf, Gunter (2000) Cell cycle regulation in diabetic nephropathy. En: Kidney International. Diabetic kidney disease research: Where do we stand at the turn of the century?; Vol. 58; pp. S59-S66; 0085-2538; Consultado en: 2021/05/12/15:22:50. Disponible en: https://www.sciencedirect.com/science/article/pii/S0085253815474241. Disponible en: 10.1046/j.1523-1755.2000.07710.x.
Jannière, Laurent; Canceill, Danielle; Suski, Catherine; Kanga, Sophie; Dalmais, Bérengère; Lestini, Roxane; Monnier, Anne-Françoise; Chapuis, Jérôme; Bolotin, Alexander; Titok, Marina; Chatelier, Emmanuelle Le; Ehrlich, S. Dusko (2007) Genetic Evidence for a Link Between Glycolysis and DNA Replication. En: PLOS ONE. Vol. 2; No. 5; pp. e447 1932-6203; Consultado en: 2021/05/12/16:25:47. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0000447. Disponible en: 10.1371/journal.pone.0000447.
da Veiga Moreira, Jorgelindo; Peres, Sabine; Steyaert, Jean-Marc; Bigan, Erwan; Paulevé, Loïc; Nogueira, Marcel Levy; Schwartz, Laurent (2015) Cell cycle progression is regulated by intertwined redox oscillators. En: Theoretical Biology and Medical Modelling. Vol. 12; No. 1; pp. 10 1742-4682; Consultado en: 2021/05/12/16:52:31. Disponible en: https://doi.org/10.1186/s12976-015-0005-2. Disponible en: 10.1186/s12976-015-0005-2.
Nagy, Tamás; Fisi, Viktória; Frank, Dorottya; Kátai, Emese; Nagy, Zsófia; Miseta, Attila (2019) Hyperglycemia-Induced Aberrant Cell Proliferation; A Metabolic Challenge Mediated by Protein O-GlcNAc Modification. En: Cells. Vol. 8; No. 9; pp. 999 Consultado en: 2021/05/12/18:28:54. Disponible en: https://www.mdpi.com/2073-4409/8/9/999. Disponible en: 10.3390/cells8090999.
Yoon, Chang Ki; Yoon, Sam Young; Hwang, Jin Sun; Shin, Young Joo (2020) O-GlcNAc Signaling Augmentation Protects Human Corneal Endothelial Cells from Oxidative Stress via AKT Pathway Activation. En: Current Eye Research. Vol. 45; No. 5; pp. 556-562; 0271-3683; Consultado en: 2021/05/12/20:38:11. Disponible en: https://doi.org/10.1080/02713683.2019.1686154. Disponible en: 10.1080/02713683.2019.1686154.
Kruse, Carla R.; Singh, Mansher; Sørensen, Jens A.; Eriksson, Elof; Nuutila, Kristo (2016) The effect of local hyperglycemia on skin cells in vitro and on wound healing in euglycemic rats. En: Journal of Surgical Research. Vol. 206; No. 2; pp. 418-426; 0022-4804, 1095-8673; Consultado en: 2021/05/12/21:43:59. Disponible en: https://www.journalofsurgicalresearch.com/article/S0022-4804(16)30332-8/abstract. Disponible en: 10.1016/j.jss.2016.08.060.
Slawson, Chad; Zachara, Natasha E.; Vosseller, Keith; Cheung, Win D.; Lane, M. Daniel; Hart, Gerald W. (2005) Perturbations in O-linked β-N-Acetylglucosamine Protein Modification Cause Severe Defects in Mitotic Progression and Cytokinesis*. En: Journal of Biological Chemistry. Vol. 280; No. 38; pp. 32944-32956; 0021-9258; Consultado en: 2021/05/12/22:00:54. Disponible en: https://www.sciencedirect.com/science/article/pii/S0021925820791544. Disponible en: 10.1074/jbc.M503396200.
Pahwa, Heena; Khan, Md Touseef; Sharan, Kunal (2020) Hyperglycemia impairs osteoblast cell migration and chemotaxis due to a decrease in mitochondrial biogenesis. En: Molecular and Cellular Biochemistry. Vol. 469; No. 1-2; pp. 109-118; 1573-4919; Disponible en: 10.1007/s11010-020-03732-8.
Hsu, Chih-Chin; Chen, Carl Pai-Chu; Tsai, Wen-Chung; Yu, Shin-Ying; Wang, Jong-Shyan (2011) Measurement of Keratinocyte Migration in Hyperglycemia Media with an Electric Wound-Healing Assay. En: The FASEB Journal. Vol. 25; No. S1; pp. 680.1-680.1; 1530-6860; Consultado en: 2021/05/12/22:47:33. Disponible en: https://faseb.onlinelibrary.wiley.com/doi/abs/10.1096/fasebj.25.1_supplement.680.1. Disponible en: https://doi.org/10.1096/fasebj.25.1_supplement.680.1.
Rikitake, Yoshiyuki; Liao, James K. (2005) Rho-kinase mediates hyperglycemia-induced plasminogen activator inhibitor-1 expression in vascular endothelial cells. En: Circulation. Vol. 111; No. 24; pp. 3261-3268; 1524-4539; Disponible en: 10.1161/CIRCULATIONAHA.105.534024.
Akhtar, R. A.; Chaouchi, K. M. (2004) Effects of Hyperglycemia on Cell Migration and Proliferation, and Phospholipase C1 in Rabbit Corneal Epithelial Cells. En: Investigative Ophthalmology & Visual Science. Vol. 45; No. 13; pp. 3799-3799; 1552-5783; Consultado en: 2021/05/12/23:09:39. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2409333.
Okumura, Naoki; Ueno, Morio; Koizumi, Noriko; Sakamoto, Yuji; Hirata, Kana; Hamuro, Junji; Kinoshita, Shigeru (2009) Enhancement on Primate Corneal Endothelial Cell Survival In Vitro by a ROCK Inhibitor. En: Investigative Ophthalmology & Visual Science. Vol. 50; No. 8; pp. 3680-3687; 1552-5783; Consultado en: 2021/05/12/23:46:58. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2185592. Disponible en: 10.1167/iovs.08-2634.
Koizumi, Noriko; Okumura, Naoki; Ueno, Morio; Nakagawa, Hiroko; Hamuro, Junji; Kinoshita, Shigeru (2013) Rho-associated kinase inhibitor eye drop treatment as a possible medical treatment for Fuchs corneal dystrophy. En: Cornea. Vol. 32; No. 8; pp. 1167-1170; 1536-4798; Disponible en: 10.1097/ICO.0b013e318285475d.
Wang, H. Z.; Wu, K. Y.; Lin, C. P.; Fong, J. C.; Hong, S. J. (1997) Alteration of glucose uptake in cultured human corneal endothelial cells grown in high glucose media via cAMP-dependent pathway. En: The Kaohsiung Journal of Medical Sciences. Vol. 13; No. 9; pp. 566-571; 1607-551X
Stuard, Whitney L.; Titone, Rossella; Robertson, Danielle M. (2020) The IGF/Insulin-IGFBP Axis in Corneal Development, Wound Healing, and Disease. En: Frontiers in Endocrinology. Vol. 11; 1664-2392; Consultado en: 2021/05/13/21:59:11. Disponible en: https://www.frontiersin.org/articles/10.3389/fendo.2020.00024/full. Disponible en: 10.3389/fendo.2020.00024.
Takahashi, Hiroshi; Ohara, Kunitoshi; Ohmura, Takeo; Takahashi, Ryoki; Zieske, James D (2000) Glucose Transporter 1 Expression in Corneal Wound Repair under High Serum Glucose Level. En: Japanese Journal of Ophthalmology. Vol. 44; No. 5; pp. 470-474; 0021-5155; Consultado en: 2021/05/13/23:47:23. Disponible en: https://www.sciencedirect.com/science/article/pii/S0021515500002227. Disponible en: 10.1016/S0021-5155(00)00222-7.
STRING: functional protein association networks. Consultado en: 2021/05/14/00:07:07. Disponible en: https://string-db.org/.
Philipp, Wolfgang; Speicher, Lilly; Humpel, Christian (2000) Expression of Vascular Endothelial Growth Factor and Its Receptors in Inflamed and Vascularized Human Corneas. En: Investigative Ophthalmology & Visual Science. Vol. 41; No. 9; pp. 2514-2522; 1552-5783; Consultado en: 2021/05/14/11:21:28. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2162302.
Deardorff, Phillip M.; McKay, Tina B.; Wang, Siran; Ghezzi, Chiara E.; Cairns, Dana M.; Abbott, Rosalyn D.; Funderburgh, James L.; Kenyon, Kenneth R.; Kaplan, David L. (2018) Modeling Diabetic Corneal Neuropathy in a 3D In Vitro Cornea System. En: Scientific Reports. Vol. 8; No. 1; pp. 17294 2045-2322; Consultado en: 2021/05/15/01:12:05. Disponible en: https://www.nature.com/articles/s41598-018-35917-z. Disponible en: 10.1038/s41598-018-35917-z.
Kovatchev, Boris P.; Otto, Erik; Cox, Daniel; Gonder-Frederick, Linda; Clarke, William (2006) Evaluation of a New Measure of Blood Glucose Variability in Diabetes. En: Diabetes Care. Vol. 29; No. 11; pp. 2433-2438; 0149-5992, 1935-5548; Consultado en: 2021/05/15/01:22:08. Disponible en: https://care.diabetesjournals.org/content/29/11/2433. Disponible en: 10.2337/dc06-1085.
Olaniyan, Mathew Folaranmi; Babatunde, Elizabeth Moyinoluwa (2016) Preventive (myoglobin, transferrin) and scavenging (superoxide dismutase, glutathione peroxidase) anti-oxidative properties of raw liquid extract of Morinda lucida leaf in the traditional treatment of Plasmodium infection. En: Journal of Natural Science, Biology, and Medicine. Vol. 7; No. 1; pp. 47-53; 0976-9668; Disponible en: 10.4103/0976-9668.175068.
Tinggi, Ujang (2008) Selenium: its role as antioxidant in human health. En: Environmental Health and Preventive Medicine. Vol. 13; No. 2; pp. 102-108; 1342-078X; Consultado en: 2021/05/15/09:26:03. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2698273/. Disponible en: 10.1007/s12199-007-0019-4.
Fanger, Christopher M.; Ghanshani, Sanjiv; Logsdon, Naomi J.; Rauer, Heiko; Kalman, Katalin; Zhou, Jianming; Beckingham, Kathy; Chandy, K. George; Cahalan, Michael D.; Aiyar, Jayashree (1999) Calmodulin Mediates Calcium-dependent Activation of the Intermediate Conductance KCa Channel,IKCa1 *. En: Journal of Biological Chemistry. Vol. 274; No. 9; pp. 5746-5754; 0021-9258; Consultado en: 2021/05/15/11:32:45. Disponible en: https://www.sciencedirect.com/science/article/pii/S0021925819877189. Disponible en: 10.1074/jbc.274.9.5746.
Wulff, Heike; Castle, Neil A. (2010) Therapeutic potential of KCa3.1 blockers: an overview of recent advances, and promising trends. En: Expert Review of Clinical Pharmacology. Vol. 3; No. 3; pp. 385-396; 1751-2433; Consultado en: 2021/05/15/11:37:25. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3347644/. Disponible en: 10.1586/ecp.10.11.
Ghanshani, S.; Wulff, H.; Miller, M. J.; Rohm, H.; Neben, A.; Gutman, G. A.; Cahalan, M. D.; Chandy, K. G. (2000) Up-regulation of the IKCa1 potassium channel during T-cell activation. Molecular mechanism and functional consequences. En: The Journal of Biological Chemistry. Vol. 275; No. 47; pp. 37137-37149; 0021-9258; Disponible en: 10.1074/jbc.M003941200.
Grgic, Ivica; Eichler, Ines; Heinau, Philipp; Si, Han; Brakemeier, Susanne; Hoyer, Joachim; Köhler, Ralf (2005) Selective blockade of the intermediate-conductance Ca2+-activated K+ channel suppresses proliferation of microvascular and macrovascular endothelial cells and angiogenesis in vivo. En: Arteriosclerosis, Thrombosis, and Vascular Biology. Vol. 25; No. 4; pp. 704-709; 1524-4636; Disponible en: 10.1161/01.ATV.0000156399.12787.5c.
Schilling, Tom; Stock, Christian; Schwab, Albrecht; Eder, Claudia (2004) Functional importance of Ca2+-activated K+ channels for lysophosphatidic acid-induced microglial migration. En: The European Journal of Neuroscience. Vol. 19; No. 6; pp. 1469-1474; 0953-816X; Disponible en: 10.1111/j.1460-9568.2004.03265.x.
Lang, Philipp A.; Kaiser, Stefanie; Myssina, Swetlana; Wieder, Thomas; Lang, Florian; Huber, Stephan M. (2003) Role of Ca2+-activated K+ channels in human erythrocyte apoptosis. En: American Journal of Physiology. Cell Physiology. Vol. 285; No. 6; pp. C1553-1560; 0363-6143; Disponible en: 10.1152/ajpcell.00186.2003.
Elliott, James I.; Higgins, Christopher F. (2003) IKCa1 activity is required for cell shrinkage, phosphatidylserine translocation and death in T lymphocyte apoptosis. En: EMBO Reports. Vol. 4; No. 2; pp. 189-194; 1469-221X; Consultado en: 2021/05/15/12:00:05. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1315824/. Disponible en: 10.1038/sj.embor.embor722.
Begenisich, Ted; Nakamoto, Tesuji; Ovitt, Catherine E.; Nehrke, Keith; Brugnara, Carlo; Alper, Seth L.; Melvin, James E. (2004) Physiological roles of the intermediate conductance, Ca2+-activated potassium channel Kcnn4. En: The Journal of Biological Chemistry. Vol. 279; No. 46; pp. 47681-47687; 0021-9258; Disponible en: 10.1074/jbc.M409627200.
Wulff, Heike; Miller, Mark J.; Hänsel, Wolfram; Grissmer, Stephan; Cahalan, Michael D.; Chandy, K. George (2000) Design of a potent and selective inhibitor of the intermediate-conductance Ca2+-activated K+ channel, IKCa1: A potential immunosuppressant. En: Proceedings of the National Academy of Sciences of the United States of America. Vol. 97; No. 14; pp. 8151-8156; 0027-8424; Consultado en: 2021/05/15/12:32:36. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC16685/.
Brugnara, C; Gee, B; Armsby, C C; Kurth, S; Sakamoto, M; Rifai, N; Alper, S L; Platt, O S (1996) Therapy with oral clotrimazole induces inhibition of the Gardos channel and reduction of erythrocyte dehydration in patients with sickle cell disease. En: Journal of Clinical Investigation. Vol. 97; No. 5; pp. 1227-1234; 0021-9738; Consultado en: 2021/05/15/12:52:58. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC507175/.
K+ channels as targets for specific immunomodulation. Consultado en: 2021/05/15/12:53:21. Disponible en: https://www-ncbi-nlm-nih-gov.ez.urosario.edu.co/pmc/articles/PMC2749963/.
Maezawa, Izumi; Jenkins, David Paul; Jin, Benjamin E.; Wulff, Heike (2012) Microglial KCa3.1 Channels as a Potential Therapeutic Target for Alzheimer’s Disease. En: International Journal of Alzheimer’s Disease. Vol. 2012; pp. e868972 2090-8024; Consultado en: 2021/05/15/20:24:08. Disponible en: https://www.hindawi.com/journals/ijad/2012/868972/. Disponible en: 10.1155/2012/868972.
Huang, Chunling; Yi, Hao; Shi, Ying; Cao, Qinghua; Shi, Yin; Cheng, Delfine; Braet, Filip; Chen, Xin-Ming; Pollock, Carol A. (2021) KCa3.1 Mediates Dysregulation of Mitochondrial Quality Control in Diabetic Kidney Disease. En: Frontiers in Cell and Developmental Biology. Vol. 9; pp. 573814 2296-634X; Disponible en: 10.3389/fcell.2021.573814.
Zhu, Yan-Rong; Jiang, Xiao-Xin; Zhang, Dai-Min (2019) Critical regulation of atherosclerosis by the KCa3.1 channel and the retargeting of this therapeutic target in in-stent neoatherosclerosis. En: Journal of Molecular Medicine. Vol. 97; No. 9; pp. 1219-1229; 1432-1440; Consultado en: 2021/05/15/23:21:13. Disponible en: https://doi.org/10.1007/s00109-019-01814-9. Disponible en: 10.1007/s00109-019-01814-9.
Su, Xing-Li; Zhang, Hong; Yu, Wei; Wang, Shuang; Zhu, Wei-Jun (2013) Role of KCa3.1 channels in proliferation and migration of vascular smooth muscle cells by diabetic rat serum. En: The Chinese Journal of Physiology. Vol. 56; No. 3; pp. 155-162; 0304-4920; Disponible en: 10.4077/CJP.2013.BAB104.
Lin, Mike T.; Adelman, John P.; Maylie, James (2012) Modulation of endothelial SK3 channel activity by Ca2+-dependent caveolar trafficking. En: American Journal of Physiology-Cell Physiology. Vol. 303; No. 3; pp. C318-C327; 0363-6143; Consultado en: 2021/05/16/01:56:16. Disponible en: https://journals.physiology.org/doi/full/10.1152/ajpcell.00058.2012. Disponible en: 10.1152/ajpcell.00058.2012.
Roy, J. W.; Cowley, E. A.; Blay, J.; Linsdell, P. (2010) The intermediate conductance Ca2+-activated K+ channel inhibitor TRAM-34 stimulates proliferation of breast cancer cells via activation of oestrogen receptors. En: British Journal of Pharmacology. Vol. 159; No. 3; pp. 650-658; 1476-5381; Disponible en: 10.1111/j.1476-5381.2009.00557.x.
1-EBIO | #E-150 | CAS 10045-45-1. En: Alomone Labs. Consultado en: 2021/05/16/16:54:34. Disponible en: https://www.alomone.com/p/1-ebio/E-150.
Chadha, Preet S.; Liu, Lu; Rikard-Bell, Matt; Senadheera, Sevvandi; Howitt, Lauren; Bertrand, Rebecca L.; Grayson, T. Hilton; Murphy, Timothy V.; Sandow, Shaun L. (2011) Endothelium-Dependent Vasodilation in Human Mesenteric Artery Is Primarily Mediated by Myoendothelial Gap Junctions Intermediate Conductance Calcium-Activated K+ Channel and Nitric Oxide. En: Journal of Pharmacology and Experimental Therapeutics. Vol. 336; No. 3; pp. 701-708; 0022-3565, 1521-0103; Consultado en: 2021/05/16/21:16:58. Disponible en: https://jpet.aspetjournals.org/content/336/3/701. Disponible en: 10.1124/jpet.110.165795.
Maldonado, Oscar; Jenkins, Alexandra; Belalcazar, Helen M.; Hernandez-Cuervo, Helena; Hyman, Katelynn M.; Ladaga, Giannina; Padilla, Lucia; Erausquin, Gabriel A. de (2020) Age-dependent neuroprotective effect of an SK3 channel agonist on excitotoxity to dopaminergic neurons in organotypic culture. En: PLOS ONE. Vol. 15; No. 7; pp. e0223633 1932-6203; Consultado en: 2021/05/16/21:22:09. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0223633. Disponible en: 10.1371/journal.pone.0223633.
Spergel, Daniel J. (2007) Calcium and Small-Conductance Calcium-Activated Potassium Channels in Gonadotropin-Releasing Hormone Neurons before, during, and after Puberty. En: Endocrinology. Vol. 148; No. 5; pp. 2383-2390; 0013-7227; Consultado en: 2021/05/16/21:31:39. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3315592/. Disponible en: 10.1210/en.2006-1693.
Kanawa, Surbhi; Jain, Kalpna; Sagar, Vinod; Yadav, Dinesh K. (2021) Evaluation of changes in corneal endothelium in chronic kidney disease. En: Indian Journal of Ophthalmology. Vol. 69; No. 5; pp. 1080-1083; 0301-4738; Consultado en: 2021/05/17/01:56:10. Disponible en: https://journals.lww.com/ijo/Fulltext/2021/05000/Evaluation_of_changes_in_corneal_endothelium_in.14.aspx. Disponible en: 10.4103/ijo.IJO_1764_20.
Bi, Dan; Toyama, Kazuyoshi; Lemaître, Vincent; Takai, Jun; Fan, Fan; Jenkins, David P.; Wulff, Heike; Gutterman, David D.; Park, Frank; Miura, Hiroto (2013) The Intermediate Conductance Calcium-activated Potassium Channel KCa3.1 Regulates Vascular Smooth Muscle Cell Proliferation via Controlling Calcium-dependent Signaling*. En: Journal of Biological Chemistry. Vol. 288; No. 22; pp. 15843-15853; 0021-9258; Consultado en: 2021/05/18/06:49:21. Disponible en: https://www.sciencedirect.com/science/article/pii/S002192582045971X. Disponible en: 10.1074/jbc.M112.427187.
Manaves, Vlasios; Qin, Wuxuan; Bauer, Amy L.; Rossie, Sandra; Kobayashi, Masakazu; Rane, Stanley G. (2004) Calcium and Vitamin D increase mRNA levels for the growth control hIK1 channel in human epidermal keratinocytes but functional channels are not observed. En: BMC Dermatology. Vol. 4; No. 1; pp. 7 1471-5945; Consultado en: 2021/05/18/07:02:24. Disponible en: https://doi.org/10.1186/1471-5945-4-7. Disponible en: 10.1186/1471-5945-4-7.
De Marchi, Umberto; Sassi, Nicola; Fioretti, Bernard; Catacuzzeno, Luigi; Cereghetti, Grazia M.; Szabò, Ildikò; Zoratti, Mario (2009) Intermediate conductance Ca2+-activated potassium channel (KCa3.1) in the inner mitochondrial membrane of human colon cancer cells. En: Cell Calcium. Vol. 45; No. 5; pp. 509-516; 1532-1991; Disponible en: 10.1016/j.ceca.2009.03.014.
Lee, Elbert L.; Hasegawa, Yuichi; Shimizu, Takahiro; Okada, Yasunobu (2008) IK1 channel activity contributes to cisplatin sensitivity of human epidermoid cancer cells. En: American Journal of Physiology-Cell Physiology. Vol. 294; No. 6; pp. C1398-C1406; 0363-6143; Consultado en: 2021/05/18/08:01:47. Disponible en: https://journals.physiology.org/doi/full/10.1152/ajpcell.00428.2007. Disponible en: 10.1152/ajpcell.00428.2007.
Gospodarowicz, Denis; Mescher, Anthony L.; Birdwell, Charles R. (1977) Stimulation of corneal endothelial cell proliferation in vitro by fibroblast and epidermal growth factors. En: Experimental Eye Research. Vol. 25; No. 1; pp. 75-89; 0014-4835; Consultado en: 2021/05/18/22:54:42. Disponible en: https://www.sciencedirect.com/science/article/pii/0014483577902482. Disponible en: 10.1016/0014-4835(77)90248-2.
Zhao, Li-Mei; Zhang, Wei; Wang, Li-Ping; Li, Gui-Rong; Deng, Xiu-Ling (2012) Advanced glycation end products promote proliferation of cardiac fibroblasts by upregulation of KCa3.1 channels. En: Pflügers Archiv. Vol. 464; No. 6; pp. 613-621; 1432-2013; Consultado en: 2021/05/18/23:20:56. Disponible en: https://doi.org/10.1007/s00424-012-1165-0. Disponible en: 10.1007/s00424-012-1165-0.
Catacuzzeno, Luigi; Aiello, Francesco; Fioretti, Bernard; Sforna, Luigi; Castigli, Emilia; Ruggieri, Paola; Tata, Ada Maria; Calogero, Antonella; Franciolini, Fabio (2011) Serum-activated K and Cl currents underlay U87-MG glioblastoma cell migration. En: Journal of Cellular Physiology. Vol. 226; No. 7; pp. 1926-1933; 1097-4652; Disponible en: 10.1002/jcp.22523.
Cuddapah, Vishnu Anand; Habela, Christa W.; Watkins, Stacey; Moore, Lindsay S.; Barclay, Tia-Tabitha C.; Sontheimer, Harald (2012) Kinase activation of ClC-3 accelerates cytoplasmic condensation during mitotic cell rounding. En: American Journal of Physiology. Cell Physiology. Vol. 302; No. 3; pp. C527-538; 1522-1563; Disponible en: 10.1152/ajpcell.00248.2011.
Catacuzzeno, Luigi; Franciolini, Fabio (2018) Role of KCa3.1 Channels in Modulating Ca2+ Oscillations during Glioblastoma Cell Migration and Invasion. En: International Journal of Molecular Sciences. Vol. 19; No. 10; pp. 2970 Consultado en: 2021/05/19/01:05:35. Disponible en: https://www.mdpi.com/1422-0067/19/10/2970. Disponible en: 10.3390/ijms19102970.
Gao, Ya-dong; Hanley, Peter J.; Rinné, Susanne; Zuzarte, Marylou; Daut, Jurgen (2010) Calcium-activated K(+) channel (K(Ca)3.1) activity during Ca(2+) store depletion and store-operated Ca(2+) entry in human macrophages. En: Cell Calcium. Vol. 48; No. 1; pp. 19-27; 1532-1991; Disponible en: 10.1016/j.ceca.2010.06.002.
Fioretti, Bernard; Catacuzzeno, Luigi; Sforna, Luigi; Aiello, Francesco; Pagani, Francesca; Ragozzino, Davide; Castigli, Emilia; Franciolini, Fabio (2009) Histamine hyperpolarizes human glioblastoma cells by activating the intermediate-conductance Ca2+-activated K+ channel. En: American Journal of Physiology. Cell Physiology. Vol. 297; No. 1; pp. C102-110; 1522-1563; Disponible en: 10.1152/ajpcell.00354.2008.
Jakakul, Chanon; Kanjanasirirat, Phongthon; Muanprasat, Chatchai (2021) Development of a Cell-Based Assay for Identifying KCa3.1 Inhibitors Using Intestinal Epithelial Cell Lines. En: SLAS DISCOVERY: Advancing the Science of Drug Discovery. Vol. 26; No. 3; pp. 439-449; 2472-5552; Consultado en: 2021/05/19/01:51:41. Disponible en: https://doi.org/10.1177/2472555220950661. Disponible en: 10.1177/2472555220950661.
Liu, Yu; Zhao, Liang; Ma, Wenya; Cao, Xuefeng; Chen, Hongyang; Feng, Dan; Liang, Jing; Yin, Kun; Jiang, Xiaofeng (2015) The Blockage of KCa3.1 Channel Inhibited Proliferation, Migration and Promoted Apoptosis of Human Hepatocellular Carcinoma Cells. En: Journal of Cancer. Vol. 6; No. 7; pp. 643-651; 1837-9664; Consultado en: 2021/05/19/01:59:47. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4466414/. Disponible en: 10.7150/jca.11913.
Petho, Zoltan; Balajthy, Andras; Bartok, Adam; Bene, Krisztian; Somodi, Sandor; Szilagyi, Orsolya; Rajnavolgyi, Eva; Panyi, Gyorgy; Varga, Zoltan (2016) The anti-proliferative effect of cation channel blockers in T lymphocytes depends on the strength of mitogenic stimulation. En: Immunology Letters. Vol. 171; pp. 60-69; 0165-2478; Consultado en: 2021/05/19/09:30:31. Disponible en: https://www.sciencedirect.com/science/article/pii/S0165247816300128. Disponible en: 10.1016/j.imlet.2016.02.003.
Petho, Zoltan; Balajthy, Andras; Bartok, Adam; Bene, Krisztian; Somodi, Sandor; Szilagyi, Orsolya; Rajnavolgyi, Eva; Panyi, Gyorgy; Varga, Zoltan (2016) The anti-proliferative effect of cation channel blockers in T lymphocytes depends on the strength of mitogenic stimulation. En: Immunology Letters. Vol. 171; pp. 60-69; 0165-2478; Consultado en: 2021/05/19/09:48:32. Disponible en: https://www.sciencedirect.com/science/article/pii/S0165247816300128. Disponible en: 10.1016/j.imlet.2016.02.003.
Aketa, Naohiko; Uchino, Miki; Kawashima, Motoko; Uchino, Yuichi; Yuki, Kenya; Ozawa, Yoko; Sasaki, Mariko; Yamagishi, Kazumasa; Sawada, Norie; Tsugane, Shoichiro; Tsubota, Kazuo; Iso, Hiroyasu (2021) Myopia, corneal endothelial cell density and morphology in a Japanese population-based cross-sectional study: the JPHC-NEXT Eye Study. En: Scientific Reports. Vol. 11; No. 1; pp. 6366 2045-2322; Consultado en: 2021/05/19/23:15:15. Disponible en: https://www.nature.com/articles/s41598-021-85617-4. Disponible en: 10.1038/s41598-021-85617-4.
Cárdenas Díaz, Taimi; Corcho Arévalo, Yeni; Torres Ortega, Rosario; Capote Cabrera, Armando; Hernández López, Iván; Cruz Izquierdo, Dunia (2013) Caracterización del endotelio corneal en pacientes con indicación de cirugía de catarata. En: Revista Cubana de Oftalmología. Vol. 26; No. 1; pp. 39-47; 0864-2176; Consultado en: 2021/05/19/23:15:47. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S0864-21762013000100005&lng=es&nrm=iso&tlng=es.
Liu, Cailing; Miyajima, Taiga; Melangath, Geetha; Miyai, Takashi; Vasanth, Shivakumar; Deshpande, Neha; Kumar, Varun; Ong Tone, Stephan; Gupta, Reena; Zhu, Shan; Vojnovic, Dijana; Chen, Yuming; Rogan, Eleanor G.; Mondal, Bodhiswatta; Zahid, Muhammad; Jurkunas, Ula V. (2020) Ultraviolet A light induces DNA damage and estrogen-DNA adducts in Fuchs endothelial corneal dystrophy causing females to be more affected. En: Proceedings of the National Academy of Sciences of the United States of America. Vol. 117; No. 1; pp. 573-583; 0027-8424; Consultado en: 2021/05/19/23:16:20. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6955350/. Disponible en: 10.1073/pnas.1912546116.
R: The R Project for Statistical Computing. Consultado en: 2021/06/02/17:05:44. Disponible en: https://www.r-project.org/.
Feizi, Sepehr (2018) Corneal endothelial cell dysfunction: etiologies and management. En: Therapeutic Advances in Ophthalmology. Vol. 10; 2515-8414; Consultado en: 2021/06/02/19:50:34. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6293368/. Disponible en: 10.1177/2515841418815802.
Anbar, Mohamed; Mohamed Mostafa, Engy; Elhawary, Ashraf Mostafa; Awny, Islam; Farouk, Mahmoud Mohamed; Mounir, Amr (2019) Evaluation of Corneal Higher-Order Aberrations by Scheimpflug–Placido Topography in Patients with Different Refractive Errors: A Retrospective Observational Study. En: Journal of Ophthalmology. Vol. 2019; 2090-004X; Consultado en: 2021/06/02/21:52:31. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6589193/. Disponible en: 10.1155/2019/5640356.
Repositorio EdocUR-U. Rosario
Universidad del Rosario
instacron:Universidad del Rosario
Yau, Joanne W. Y.; Rogers, Sophie L.; Kawasaki, Ryo; Lamoureux, Ecosse L.; Kowalski, Jonathan W.; Bek, Toke; Chen, Shih-Jen; Dekker, Jacqueline M.; Fletcher, Astrid; Grauslund, Jakob; Haffner, Steven; Hamman, Richard F.; Ikram, M. Kamran; Kayama, Takamasa; Klein, Barbara E. K.; Klein, Ronald; Krishnaiah, Sannapaneni; Mayurasakorn, Korapat; O'Hare, Joseph P.; Orchard, Trevor J.; Porta, Massimo; Rema, Mohan; Roy, Monique S.; Sharma, Tarun; Shaw, Jonathan; Taylor, Hugh; Tielsch, James M.; Varma, Rohit; Wang, Jie Jin; Wang, Ningli; West, Sheila; Xu, Liang; Yasuda, Miho; Zhang, Xinzhi; Mitchell, Paul; Wong, Tien Y.; Meta-Analysis for Eye Disease (META-EYE) Study Group (2012) Global prevalence and major risk factors of diabetic retinopathy. En: Diabetes Care. Vol. 35; No. 3; pp. 556-564; 1935-5548; Disponible en: 10.2337/dc11-1909.
WHO | Diabetes country profiles 2016. En: WHO. Consultado en: 2018/03/07/15:45:37. Disponible en: http://www.who.int/diabetes/country-profiles/en/.
Powers, Alvin C.; Kasper, Dennis; Fauci, Anthony; Hauser, Stephen; Longo, Dan; Jameson, J. Larry; Loscalzo, Joseph (2015) Diabetes Mellitus: Diagnosis, Classification, and Pathophysiology. En: Harrison's Principles of Internal Medicine. New York, NY: McGraw-Hill Education; Consultado en: 2018/03/07/15:41:21. Disponible en: accessmedicine.mhmedical.com/content.aspx?aid=1120816080.
International Diabetes Federation (2019) IDF Diabetes Atlas. Brussels, Belgium: International Diabetes Federation; Consultado en: 2020/11/03/14:20:44. Disponible en: https://www.diabetesatlas.org/upload/resources/material/20200302_133351_IDFATLAS9e-final-web.pdf.
Liang, Chun-Chi; Park, Ann Y.; Guan, Jun-Lin (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. En: Nature Protocols. Vol. 2; No. 2; pp. 329-333; 1750-2799; Disponible en: 10.1038/nprot.2007.30.
Srinivas, S. P.; Yeh, J. C.; Ong, A.; Bonanno, J. A. (1998) Ca2+ mobilization in bovine corneal endothelial cells by P2 purinergic receptors. En: Current Eye Research. Vol. 17; No. 10; pp. 994-1004; 0271-3683
Hatou, Shin; Yamada, Masakazu; Mochizuki, Hiroshi; Shiraishi, Atsushi; Joko, Takeshi; Nishida, Teruo (2009) The effects of dexamethasone on the Na,K-ATPase activity and pump function of corneal endothelial cells. En: Current Eye Research. Vol. 34; No. 5; pp. 347-354; 1460-2202; Disponible en: 10.1080/02713680902829624.
Srinivas, Sangly P. (2012) Cell Signaling in Regulation of the Barrier Integrity of the Corneal Endothelium. En: Experimental Eye Research. Vol. 95; No. 1; pp. 8-15; 0014-4835; Consultado en: 2018/03/13/17:08:09. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3271188/. Disponible en: 10.1016/j.exer.2011.09.009.
Mergler, Stefan; Pleyer, Uwe (2007) The human corneal endothelium: new insights into electrophysiology and ion channels. En: Progress in Retinal and Eye Research. Vol. 26; No. 4; pp. 359-378; 1350-9462; Disponible en: 10.1016/j.preteyeres.2007.02.001.
El-Agamy, Amira; Alsubaie, Shams (2017) Corneal endothelium and central corneal thickness changes in type 2 diabetes mellitus. En: Clinical Ophthalmology (Auckland, N.Z.). Vol. 11; pp. 481-486; 1177-5467; Disponible en: 10.2147/OPTH.S126217.
Sudhir, Rachapalle R.; Raman, Rajiv; Sharma, Tarun (2012) Changes in the corneal endothelial cell density and morphology in patients with type 2 diabetes mellitus: a population-based study, Sankara Nethralaya Diabetic Retinopathy and Molecular Genetics Study (SN-DREAMS, Report 23). En: Cornea. Vol. 31; No. 10; pp. 1119-1122; 1536-4798; Disponible en: 10.1097/ICO.0b013e31823f8e00.
Ljubimov, Alexander V. (2017) Diabetic complications in the cornea. En: Vision Research. Diabetic Retinopathy; Vol. 139; pp. 138-152; 0042-6989; Consultado en: 2018/03/13/16:51:28. Disponible en: http://www.sciencedirect.com/science/article/pii/S0042698917300470. Disponible en: 10.1016/j.visres.2017.03.002.
Riazuddin, S. Amer; Parker, David S.; McGlumphy, Elyse J.; Oh, Edwin C.; Iliff, Benjamin W.; Schmedt, Thore; Jurkunas, Ula; Schleif, Robert; Katsanis, Nicholas; Gottsch, John D. (2012) Mutations in LOXHD1, a recessive-deafness locus, cause dominant late-onset Fuchs corneal dystrophy. En: American Journal of Human Genetics. Vol. 90; No. 3; pp. 533-539; 1537-6605; Disponible en: 10.1016/j.ajhg.2012.01.013.
Loganathan, Sampath K.; Schneider, Hans-Peter; Morgan, Patricio E.; Deitmer, Joachim W.; Casey, Joseph R. (2016) Functional assessment of SLC4A11, an integral membrane protein mutated in corneal dystrophies. En: American Journal of Physiology-Cell Physiology. Vol. 311; No. 5; pp. C735-C748; 0363-6143; Consultado en: 2018/03/13/16:43:25. Disponible en: https://www.physiology.org/doi/abs/10.1152/ajpcell.00078.2016. Disponible en: 10.1152/ajpcell.00078.2016.
Hopfer, Ulrike; Fukai, Naomi; Hopfer, Helmut; Wolf, Gunter; Joyce, Nancy; Li, En; Olsen, Bjorn R. (2005) Targeted disruption of Col8a1 and Col8a2 genes in mice leads to anterior segment abnormalities in the eye. En: FASEB journal: official publication of the Federation of American Societies for Experimental Biology. Vol. 19; No. 10; pp. 1232-1244; 1530-6860; Disponible en: 10.1096/fj.04-3019com.
Jurkunas, Ula V.; Bitar, Maya S.; Funaki, Toshinari; Azizi, Behrooz (2010) Evidence of oxidative stress in the pathogenesis of fuchs endothelial corneal dystrophy. En: The American Journal of Pathology. Vol. 177; No. 5; pp. 2278-2289; 1525-2191; Disponible en: 10.2353/ajpath.2010.100279.
Jurkunas, Ula V.; Rawe, Ian; Bitar, Maya S.; Zhu, Cheng; Harris, Deshea L.; Colby, Kathryn; Joyce, Nancy C. (2008) Decreased expression of peroxiredoxins in Fuchs' endothelial dystrophy. En: Investigative Ophthalmology & Visual Science. Vol. 49; No. 7; pp. 2956-2963; 1552-5783; Disponible en: 10.1167/iovs.07-1529.
Baratz, Keith H.; Tosakulwong, Nirubol; Ryu, Euijung; Brown, William L.; Branham, Kari; Chen, Wei; Tran, Khoa D.; Schmid-Kubista, Katharina E.; Heckenlively, John R.; Swaroop, Anand; Abecasis, Goncalo; Bailey, Kent R.; Edwards, Albert O. (2010) E2-2 protein and Fuchs's corneal dystrophy. En: The New England Journal of Medicine. Vol. 363; No. 11; pp. 1016-1024; 1533-4406; Disponible en: 10.1056/NEJMoa1007064.
Kim, Eun Chul; Toyono, Tetsuya; Berlinicke, Cynthia A.; Zack, Donald J.; Jurkunas, Ula; Usui, Tomohiko; Jun, Albert S. (2017) Screening and Characterization of Drugs That Protect Corneal Endothelial Cells Against Unfolded Protein Response and Oxidative Stress. En: Investigative Ophthalmology & Visual Science. Vol. 58; No. 2; pp. 892-900; 0146-0404; Consultado en: 2018/03/13/16:30:52. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5295784/. Disponible en: 10.1167/iovs.16-20147.
Vedana, Gustavo; Villarreal, Guadalupe; Jun, Albert S (2016) Fuchs endothelial corneal dystrophy: current perspectives. En: Clinical Ophthalmology (Auckland, N.Z.). Vol. 10; pp. 321-330; 1177-5467; Consultado en: 2018/03/13/16:29:26. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4762439/. Disponible en: 10.2147/OPTH.S83467.
Xia, Dan; Zhang, Shuai; Nielsen, Esben; Ivarsen, Anders Ramløv; Liang, Chunyong; Li, Qiang; Thomsen, Karen; Hjortdal, Jesper Østergaard; Dong, Mingdong (2016) The Ultrastructures and Mechanical Properties of the Descement’s Membrane in Fuchs Endothelial Corneal Dystrophy. En: Scientific Reports. Vol. 6; pp. 23096 2045-2322; Consultado en: 2018/03/13/16:27:02. Disponible en: https://www.nature.com/articles/srep23096. Disponible en: 10.1038/srep23096.
Shenoy, Radha; Khandekar, Rajeev; Bialasiewicz, Alexander; Al Muniri, Abdullah (2009) Corneal endothelium in patients with diabetes mellitus: a historical cohort study. En: European Journal of Ophthalmology. Vol. 19; No. 3; pp. 369-375; 1120-6721
Larsson, L. I.; Bourne, W. M.; Pach, J. M.; Brubaker, R. F. (1996) Structure and function of the corneal endothelium in diabetes mellitus type I and type II. En: Archives of Ophthalmology (Chicago, Ill.: 1960). Vol. 114; No. 1; pp. 9-14; 0003-9950
Takahashi, Hiroshi; Akiba, Kiyoshi; Noguchi, Takayasu; Ohmura, Takeo; Takahashi, Ryoki; Ezure, Youji; Ohara, Kunitoshi; Zieske, James D. (2000) Matrix metalloproteinase activity is enhanced during corneal wound repair in high glucose condition. En: Current Eye Research. Vol. 21; No. 2; pp. 608-615; 0271-3683; Consultado en: 2018/03/13/11:27:30. Disponible en: https://www.tandfonline.com/doi/abs/10.1076/0271-3683%28200008%292121-VFT608. Disponible en: 10.1076/0271-3683(200008)2121-VFT608.
Matsuda, Mamoru; Awata, Takashi; Ohashi, Yuichi; Inaba, Masamaru; Fukuda, Masakatsu; Manabe, Reizo (1987) The effects of aldose reductase inhibitor on the corneal endothelial morphology in diabetic rats. En: Current Eye Research. Vol. 6; No. 2; pp. 391-397; 0271-3683; Consultado en: 2018/03/13/11:25:01. Disponible en: https://doi.org/10.3109/02713688709025192. Disponible en: 10.3109/02713688709025192.
Srivastava, Satish K; Yadav, Umesh C S; Reddy, Aramati BM; Saxena, Ashish; Tammali, Ravinder; Mohammad, Shoeb; Ansari, Naseem H; Bhatnagar, Aruni; Petrash, Mark J; Srivastava, Sanjay; Ramana, Kota V (2011) Aldose Reductase Inhibition Suppresses Oxidative Stress-Induced Inflammatory Disorders. En: Chemico-biological interactions. Vol. 191; No. 1-3; pp. 330-338; 0009-2797; Consultado en: 2018/03/13/11:23:25. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3103634/. Disponible en: 10.1016/j.cbi.2011.02.023.
Hasan, S. Akbar (2010) The Cornea in Diabetes Mellitus. En: Diabetic Retinopathy. pp. 347-355; Springer, New York, NY; 978-0-387-85899-9 978-0-387-85900-2; Consultado en: 2018/03/13/11:21:29. Disponible en: https://link.springer.com/chapter/10.1007/978-0-387-85900-2_12.
Sagoo, Pervinder; Chan, Giulia; Larkin, Daniel F. P.; George, Andrew J. T. (2004) Inflammatory cytokines induce apoptosis of corneal endothelium through nitric oxide. En: Investigative Ophthalmology & Visual Science. Vol. 45; No. 11; pp. 3964-3973; 0146-0404; Disponible en: 10.1167/iovs.04-0439.
Apoptosis in the Endothelium of Human Corneas for Transplantation | IOVS | ARVO Journals. Consultado en: 2018/03/13/10:56:53. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2123710.
Haeberlein, S. L. (2004) Mitochondrial function in apoptotic neuronal cell death. En: Neurochemical research. Vol. 29; No. 3; pp. 521-530; 0364-3190; Consultado en: 2018/03/13/10:52:41. Disponible en: http://europepmc.org/abstract/med/15038600. Disponible en: 10.1023/B:NERE.0000014823.74782.b7.
Umapathy, Ankita; Donaldson, Paul; Lim, Julie (2013) Antioxidant Delivery Pathways in the Anterior Eye. En: BioMed Research International. Consultado en: 2018/03/13/10:44:40. Disponible en: https://www.hindawi.com/journals/bmri/2013/207250/.
Diecke, Friedrich P. J.; Ma, Li; Iserovich, Pavel; Fischbarg, Jorge (2007) Corneal endothelium transports fluid in the absence of net solute transport. En: Biochimica et Biophysica Acta (BBA). Vol. 1768; No. 9; pp. 2043-2048; 0005-2736; Consultado en: 2018/03/13/09:24:30. Disponible en: http://www.sciencedirect.com/science/article/pii/S0005273607001800. Disponible en: 10.1016/j.bbamem.2007.05.020.
Cuadrado Escamilla, José Luis (2009) Estudio anatomo-clínico y epidemiológico de la queratitis laminar difusa como complicación postquirúrgica de la fotoqueratomileusis (lasik). Valencia: Universitat de València, Servei de Publicacions
Hu, Rebecca G.; Zhu, Yuan; Donaldson, Paul; Kalloniatis, Michael (2012) Alterations of Glutamate, Glutamine, and Related Amino Acids in the Anterior Eye Secondary to Ischaemia and Reperfusion. En: Current Eye Research. Vol. 37; No. 7; pp. 633-643; 0271-3683; Consultado en: 2018/03/13/09:09:11. Disponible en: https://doi.org/10.3109/02713683.2012.669509. Disponible en: 10.3109/02713683.2012.669509.
Mergler, Stefan; Pleyer, Uwe; Reinach, Peter; Bednarz, Jürgen; Dannowski, Haike; Engelmann, Katrin; Hartmann, Christian; Yousif, Tarik (2005) EGF suppresses hydrogen peroxide induced Ca2+ influx by inhibiting L-type channel activity in cultured human corneal endothelial cells. En: Experimental Eye Research. Vol. 80; No. 2; pp. 285-293; 0014-4835; Disponible en: 10.1016/j.exer.2004.09.012.
Zhang, Wenlin; Li, Hongde; Ogando, Diego G.; Li, Shimin; Feng, Matthew; Price, Francis W.; Tennessen, Jason M.; Bonanno, Joseph A. (2017) Glutaminolysis is Essential for Energy Production and Ion Transport in Human Corneal Endothelium. En: EBioMedicine. Vol. 16; pp. 292-301; 2352-3964; Disponible en: 10.1016/j.ebiom.2017.01.004.
Harvitt, D. M.; Bonanno, J. A. (1998) Oxygen consumption of the rabbit cornea. En: Investigative Ophthalmology & Visual Science. Vol. 39; No. 2; pp. 444-448; 1552-5783; Consultado en: 2018/03/13/08:47:43. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2181302.
Wojcik, Katarzyna A.; Kaminska, Anna; Blasiak, Janusz; Szaflik, Jerzy; Szaflik, Jacek P. (2013) Oxidative Stress in the Pathogenesis of Keratoconus and Fuchs Endothelial Corneal Dystrophy. En: International Journal of Molecular Sciences. Vol. 14; No. 9; pp. 19294-19308; 1422-0067; Consultado en: 2018/03/13/04:51:53. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3794834/. Disponible en: 10.3390/ijms140919294.
Bourne, W. M. (2003) Biology of the corneal endothelium in health and disease. En: Eye (London, England). Vol. 17; No. 8; pp. 912-918; 0950-222X; Disponible en: 10.1038/sj.eye.6700559.
Lázaro, C. García; Castillo, A. Gómez; García, J. Feijóo; Macías, JM Benítez; García, J. Sánchez (2000) [Study of the corneal endothelium after glaucoma surgery]. En: Archivos de la Sociedad Espanola de Oftalmologia. Vol. 75; No. 2; pp. 75-80; 0365-6691; Consultado en: 2018/03/13/02:12:49. Disponible en: http://europepmc.org/abstract/med/11151123.
Murano, Nao; Ishizaki, Masamichi; Sato, Shigeru; Fukuda, Yuh; Takahashi, Hiroshi (2008) Corneal endothelial cell damage by free radicals associated with ultrasound oscillation. En: Archives of Ophthalmology (Chicago, Ill.: 1960). Vol. 126; No. 6; pp. 816-821; 1538-3601; Disponible en: 10.1001/archopht.126.6.816.
Bonanno, Joseph A. (2003) Identity and regulation of ion transport mechanisms in the corneal endothelium. En: Progress in Retinal and Eye Research. Vol. 22; No. 1; pp. 69-94; 1350-9462
Remington, Lee Ann (2011) Clinical Anatomy of the Visual System E-Book. pp. 303 : Elsevier Health Sciences; 978-1-4557-2777-3
Wörner, Carlos H.; Olguín, Alicia; Ruíz-García, José L.; Garzón-Jiménez, Nuria (2011) Cell Pattern in Adult Human Corneal Endothelium. En: PLOS ONE. Vol. 6; No. 5; pp. e19483 1932-6203; Consultado en: 2018/03/11/16:58:12. Disponible en: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0019483. Disponible en: 10.1371/journal.pone.0019483.
Liesegang, Thomas J. (2002) Physiologic changes of the cornea with contact lens wear. En: The CLAO journal: official publication of the Contact Lens Association of Ophthalmologists, Inc. Vol. 28; No. 1; pp. 12-27; 0733-8902
Standring, Susan (2016) Gray's anatomy : the anatomical basis of clinical practice. United States: New York : Elsevier Limited; 9780702052309 (main edition) 9780702063060 (international edition paperback) 9780702068515 (PDF, EPUB) 9780702068522 (Inkling interactive ebook)
Chen, Edwin S.; Terry, Mark A.; Shamie, Neda; Hoar, Karen L.; Friend, Daniel J. (2008) Descemet-stripping automated endothelial keratoplasty: six-month results in a prospective study of 100 eyes. En: Cornea. Vol. 27; No. 5; pp. 514-520; 1536-4798; Disponible en: 10.1097/ICO.0b013e3181611c50.
Murphy, C.; Alvarado, J.; Juster, R.; Maglio, M. (1984) Prenatal and postnatal cellularity of the human corneal endothelium. A quantitative histologic study. En: Investigative Ophthalmology & Visual Science. Vol. 25; No. 3; pp. 312-322; 0146-0404
Li, Q. J.; Ashraf, M. F.; Shen, D. F.; Green, W. R.; Stark, W. J.; Chan, C. C.; O'Brien, T. P. (2001) The role of apoptosis in the pathogenesis of Fuchs endothelial dystrophy of the cornea. En: Archives of Ophthalmology (Chicago, Ill.: 1960). Vol. 119; No. 11; pp. 1597-1604; 0003-9950
Módis, László; Szalai, Eszter; Kertész, Katalin; Kemény-Beke, Adám; Kettesy, Beáta; Berta, András (2010) Evaluation of the corneal endothelium in patients with diabetes mellitus type I and II. En: Histology and Histopathology. Vol. 25; No. 12; pp. 1531-1537; 1699-5848; Disponible en: 10.14670/HH-25.1531.
Ljubimov, Alexander V.; Saghizadeh, Mehrnoosh (2015) Progress in corneal wound healing. En: Progress in Retinal and Eye Research. Vol. 49; pp. 17-45; 1873-1635; Disponible en: 10.1016/j.preteyeres.2015.07.002.
Skarbez, Kathryn; Priestley, Yos; Hoepf, Marcia; Koevary, Steven B. (2010) Comprehensive Review of the Effects of Diabetes on Ocular Health. En: Expert review of ophthalmology. Vol. 5; No. 4; pp. 557-577; 1746-9899; Consultado en: 2018/03/07/16:34:08. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3134329/. Disponible en: 10.1586/eop.10.44.
Kampik, D.; Ali, R. R.; Larkin, D. F. P. (2012) Experimental gene transfer to the corneal endothelium. En: Experimental Eye Research. Vol. 95; No. 1; pp. 54-59; 1096-0007; Disponible en: 10.1016/j.exer.2011.07.001.
Lwigale, Peter Y.; Bronner-Fraser, Marianne (2009) Semaphorin3A/neuropilin-1 signaling acts as a molecular switch regulating neural crest migration during cornea development. En: Developmental biology. Vol. 336; No. 2; pp. 257-265; 0012-1606; Consultado en: 2018/04/12/12:59:21. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2800376/. Disponible en: 10.1016/j.ydbio.2009.10.008.
Zieske, James D. (2004) Corneal development associated with eyelid opening. En: International Journal of Developmental Biology. Vol. 48; No. 8-9; pp. 903-911; 0214-6282, 1696-3547; Consultado en: 2018/04/12/12:46:08. Disponible en: http://www.ijdb.ehu.es/web/paper/041860jz. Disponible en: 10.1387/ijdb.041860jz.
Voltage-dependent calcium channel, L-type, alpha-1 subunit (IPR005446) < InterPro < EMBL-EBI. Consultado en: 2018/05/29/13:18:43. Disponible en: http://www.ebi.ac.uk/interpro/entry/IPR005446.
Kurtenbach, Sarah; Kurtenbach, Stefan; Zoidl, Georg (2014) Emerging functions of pannexin 1 in the eye. En: Frontiers in Cellular Neuroscience. Vol. 8; 1662-5102; Consultado en: 2018/05/29/05:00:47. Disponible en: https://www.frontiersin.org/articles/10.3389/fncel.2014.00263/full. Disponible en: 10.3389/fncel.2014.00263.
Anumanthan, Govindaraj; Gupta, Suneel; Fink, Michael K.; Hesemann, Nathan P.; Bowles, Douglas K.; McDaniel, Lindsey M.; Muhammad, Maaz; Mohan, Rajiv R. (2018) KCa3.1 ion channel: A novel therapeutic target for corneal fibrosis. En: PloS One. Vol. 13; No. 3; pp. e0192145 1932-6203; Disponible en: 10.1371/journal.pone.0192145.
Nguyen, Tracy T.; Bonanno, Joseph A. (2012) Lactate-H+ Transport Is a Significant Component of the In Vivo Corneal Endothelial Pump. En: Investigative Ophthalmology & Visual Science. Vol. 53; No. 4; pp. 2020-2029; 1552-5783; Consultado en: 2018/05/29/02:25:41. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2188361. Disponible en: 10.1167/iovs.12-9475.
Nguyen, Tracy T.; Bonanno, Joseph A. (2012) Lactate-H+ Transport Is a Significant Component of the In Vivo Corneal Endothelial Pump. En: Investigative Ophthalmology & Visual Science. Vol. 53; No. 4; pp. 2020-2029; 0146-0404; Consultado en: 2018/05/29/02:25:13. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3995573/. Disponible en: 10.1167/iovs.12-9475.
Watsky, M. A.; Cooper, K.; Rae, J. L. (1992) Transient outwardly rectifying potassium channel in the rabbit corneal endothelium. En: The Journal of Membrane Biology. Vol. 128; No. 2; pp. 123-132; 0022-2631
Yang, Dongli; MacCallum, Donald K.; Ernst, Stephen A.; Hughes, Bret A. (2003) Expression of the Inwardly Rectifying K+ Channel Kir2.1 in Native Bovine Corneal Endothelial Cells. En: Investigative Ophthalmology & Visual Science. Vol. 44; No. 8; pp. 3511-3519; 1552-5783; Consultado en: 2018/05/28/15:10:58. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2200243. Disponible en: 10.1167/iovs.02-1306.
Kew, James N. C.; Davies, Ceri H. (2010) Ion Channels: From Structure to Function. pp. 586 : Oxford University Press; 978-0-19-929675-0
Fluid transport by the cornea endothelium is dependent on buffering lactic acid efflux | American Journal of Physiology-Cell Physiology. Consultado en: 2018/05/28/03:18:04. Disponible en: https://www.physiology.org/doi/abs/10.1152/ajpcell.00095.2016?url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org&rfr_dat=cr_pub%3Dpubmed.
Lactate-H+ Transport Is a Significant Component of the In Vivo Corneal Endothelial Pump. Consultado en: 2018/05/28/02:21:01. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3995573/.
Huang, Hai; Pugsley, Michael K.; Fermini, Bernard; Curtis, Michael J.; Koerner, John; Accardi, Michael; Authier, Simon (2017) Cardiac voltage-gated ion channels in safety pharmacology: Review of the landscape leading to the CiPA initiative. En: Journal of Pharmacological and Toxicological Methods. Focused Issue on Safety Pharmacology; Vol. 87; pp. 11-23; 1056-8719; Consultado en: 2018/05/27/16:08:52. Disponible en: http://www.sciencedirect.com/science/article/pii/S1056871917300825. Disponible en: 10.1016/j.vascn.2017.04.002.
Wulff, Heike; Castle, Neil A.; Pardo, Luis A. (2009) Voltage-gated potassium channels as therapeutic targets. En: Nature Reviews. Drug Discovery. Vol. 8; No. 12; pp. 982-1001; 1474-1784; Disponible en: 10.1038/nrd2983.
Rae, J. L.; Shepard, A. R. (2000) Kv3.3 potassium channels in lens epithelium and corneal endothelium. En: Experimental Eye Research. Vol. 70; No. 3; pp. 339-348; 0014-4835; Disponible en: 10.1006/exer.1999.0796.
Rudy, B.; Maffie, J.; Amarillo, Y.; Clark, B.; Goldberg, E. M.; Jeong, H.-Y.; Kruglikov, I.; Kwon, E.; Nadal, M.; Zagha, E.; Squire, Larry R. (2009) Voltage Gated Potassium Channels: Structure and Function of Kv1 to Kv9 Subfamilies. En: Encyclopedia of Neuroscience. pp. 397-425; Oxford: Academic Press; 978-0-08-045046-9; Consultado en: 2018/05/27/04:00:30. Disponible en: https://www.sciencedirect.com/science/article/pii/B9780080450469016302.
Voltage-gated potassium channels | Introduction | BPS/IUPHAR Guide to PHARMACOLOGY. Consultado en: 2018/05/25/13:47:52. Disponible en: http://www.guidetopharmacology.org/GRAC/FamilyIntroductionForward?familyId=81.
Grizel, A. V.; Glukhov, G. S.; Sokolova, O. S. (2014) Mechanisms of Activation of Voltage-Gated Potassium Channels. En: Acta Naturae. Vol. 6; No. 4; pp. 10-26; 2075-8251; Consultado en: 2018/05/24/19:53:18. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4273088/.
Joyce, Nancy C.; Harris, Deshea L. (2010) Decreasing expression of the G1-phase inhibitors, p21Cip1 and p16INK4a, promotes division of corneal endothelial cells from older donors. En: Molecular Vision. Vol. 16; pp. 897-906; 1090-0535
Rae, J. L.; Watsky, M. A. (1996) Ionic channels in corneal endothelium. En: The American Journal of Physiology. Vol. 270; No. 4 Pt 1; pp. C975-989; 0002-9513; Disponible en: 10.1152/ajpcell.1996.270.4.C975.
Yu, Frank H; Catterall, William A (2003) Overview of the voltage-gated sodium channel family. En: Genome Biology. Vol. 4; No. 3; pp. 207 1465-6906; Consultado en: 2018/05/21/13:23:31. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC153452/.
Chhabra, Mahendra; Prausnitz, John M.; Radke, Clayton J. (2009) Modeling corneal metabolism and oxygen transport during contact lens wear. En: Optometry and Vision Science: Official Publication of the American Academy of Optometry. Vol. 86; No. 5; pp. 454-466; 1538-9235; Disponible en: 10.1097/OPX.0b013e31819f9e70.
Li, Shimin; Allen, Kah Tan; Bonanno, Joseph A. (2011) Soluble adenylyl cyclase mediates bicarbonate-dependent corneal endothelial cell protection. En: American Journal of Physiology. Cell Physiology. Vol. 300; No. 2; pp. C368-374; 1522-1563; Disponible en: 10.1152/ajpcell.00314.2010.
Sun, Xing Cai; Zhai, Chang-Bin; Cui, Miao; Chen, Yanqiu; Levin, Lonny R.; Buck, Jochen; Bonanno, Joseph A. (2003) HCO(3)(-)-dependent soluble adenylyl cyclase activates cystic fibrosis transmembrane conductance regulator in corneal endothelium. En: American Journal of Physiology. Cell Physiology. Vol. 284; No. 5; pp. C1114-1122; 0363-6143; Disponible en: 10.1152/ajpcell.00400.2002.
Rauz, Saaeha; Walker, Elizabeth A.; Murray, Philip I.; Stewart, Paul M. (2003) Expression and distribution of the serum and glucocorticoid regulated kinase and the epithelial sodium channel subunits in the human cornea. En: Experimental Eye Research. Vol. 77; No. 1; pp. 101-108; 0014-4835
Sánchez, J. M.; Li, Y.; Rubashkin, A.; Iserovich, P.; Wen, Q.; Ruberti, J. W.; Smith, R. W.; Rittenband, D.; Kuang, K.; Diecke, F. P. J.; Fischbarg, J. (2002) Evidence for a central role for electro-osmosis in fluid transport by corneal endothelium. En: The Journal of Membrane Biology. Vol. 187; No. 1; pp. 37-50; 0022-2631; Disponible en: 10.1007/s00232-001-0151-9.
Fischbarg, Jorge (2010) Fluid Transport Across Leaky Epithelia: Central Role of the Tight Junction and Supporting Role of Aquaporins. En: Physiological Reviews. Vol. 90; No. 4; pp. 1271-1290; 0031-9333; Consultado en: 2018/05/17/20:38:47. Disponible en: https://www.physiology.org/doi/abs/10.1152/physrev.00025.2009. Disponible en: 10.1152/physrev.00025.2009.
Riley, M. V.; Winkler, B. S.; Starnes, C. A.; Peters, M. I. (1997) Fluid and ion transport in corneal endothelium: insensitivity to modulators of Na(+)-K(+)-2Cl-cotransport. En: The American Journal of Physiology. Vol. 273; No. 5 Pt 1; pp. C1480-1486; 0002-9513
Diecke, Friedrich P.; Wen, Quan; Iserovich, Pavel; Li, Jianfeng; Kuang, Kunyan; Fischbarg, Jorge (2005) Regulation of Na-K-2Cl cotransport in cultured bovine corneal endothelial cells. En: Experimental Eye Research. Vol. 80; No. 6; pp. 777-785; 0014-4835; Disponible en: 10.1016/j.exer.2004.12.008.
Watsky, M. A.; Rae, J. L. (1991) Resting voltage measurements of the rabbit corneal endothelium using patch-current clamp techniques. En: Investigative Ophthalmology & Visual Science. Vol. 32; No. 1; pp. 106-111; 0146-0404
Zhang, Wenlin; Ogando, Diego G.; Bonanno, Joseph A.; Obukhov, Alexander G. (2015) Human SLC4A11 Is a Novel NH3/H+ Co-transporter. En: The Journal of Biological Chemistry. Vol. 290; No. 27; pp. 16894-16905; 1083-351X; Disponible en: 10.1074/jbc.M114.627455.
Bonanno, Joseph A. (2012) Molecular Mechanisms Underlying the Corneal Endothelial Pump. En: Experimental Eye Research. Vol. 95; No. 1; pp. 2-7; 0014-4835; Consultado en: 2018/05/09/04:12:43. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3199349/. Disponible en: 10.1016/j.exer.2011.06.004.
Redbrake, C.; Salla, S.; Frantz, A.; Reim, M. (1999) Metabolic changes of the human donor cornea during organ-culture. En: Acta Ophthalmologica Scandinavica. Vol. 77; No. 3; pp. 266-272; 1395-3907
Reim, M.; Lax, F.; Lichte, H.; Turss, R. (1967) Steady State Levels of Glucose in the Different Layers of the Cornea, Aqueous Humor, Blood and Tears in vivo. En: Ophthalmologica. Vol. 154; No. 1; pp. 39-50; 0030-3755, 1423-0267; Consultado en: 2018/05/08/20:19:19. Disponible en: https://www.karger.com/Article/FullText/305147. Disponible en: 10.1159/000305147.
Kumagai, A. K.; Glasgow, B. J.; Pardridge, W. M. (1994) GLUT1 glucose transporter expression in the diabetic and nondiabetic human eye. En: Investigative Ophthalmology & Visual Science. Vol. 35; No. 6; pp. 2887-2894; 0146-0404
Verkman, AS (2002) Aquaporin water channels and endothelial cell function. En: Journal of Anatomy. Vol. 200; No. 6; pp. 617-627; 0021-8782; Consultado en: 2018/05/08/19:17:26. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1570747/. Disponible en: 10.1046/j.1469-7580.2002.00058.x.
Kuang, Kunyan; Yiming, Maimaiti; Wen, Quan; Li, Yansui; Ma, Li; Iserovich, Pavel; Verkman, A. S.; Fischbarg, Jorge (2004) Fluid transport across cultured layers of corneal endothelium from aquaporin-1 null mice. En: Experimental Eye Research. Vol. 78; No. 4; pp. 791-798; 0014-4835; Disponible en: 10.1016/j.exer.2003.11.017.
Mendez, M. G.; Restle, D.; Janmey, P. A. (2014) Vimentin enhances cell elastic behavior and protects against compressive stress. En: Biophysical Journal. Vol. 107; No. 2; pp. 314-323; 1542-0086; Disponible en: 10.1016/j.bpj.2014.04.050.
He, Zhiguo; Forest, Fabien; Gain, Philippe; Rageade, Damien; Bernard, Aurélien; Acquart, Sophie; Peoc’h, Michel; Defoe, Dennis M.; Thuret, Gilles (2016) 3D map of the human corneal endothelial cell. En: Scientific Reports. Vol. 6; pp. 29047 2045-2322; Consultado en: 2018/05/07/18:57:20. Disponible en: https://www.nature.com/articles/srep29047. Disponible en: 10.1038/srep29047.
Hejtmancik, J. Fielding; Nickerson, John M. (2015) Molecular Biology of Eye Disease. pp. 573 : Academic Press; 978-0-12-801267-3
Forrester, John V.; Dick, Andrew D.; McMenamin, Paul G.; Roberts, Fiona; Pearlman, Eric (2016) Chapter 1. En: The Eye (Fourth Edition). pp. 1-102.e2; W.B. Saunders; 978-0-7020-5554-6; Consultado en: 2018/05/03/02:38:01. Disponible en: https://www.sciencedirect.com/science/article/pii/B9780702055546000010.
Chang, Hui; Ma, Yu-Guang; Wang, Yun-Ying; Song, Zhen; Li, Quan; Yang, Ning; Zhao, Hua-Zhou; Feng, Han-Zhong; Chang, Yao-Ming; Ma, Jin; Yu, Zhi-Bin; Xie, Man-Jiang (2011) High glucose alters apoptosis and proliferation in HEK293 cells by inhibition of cloned BKCa channel. En: Journal of Cellular Physiology. Vol. 226; No. 6; pp. 1660-1675; 1097-4652; Consultado en: 2018/05/03/02:07:35. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1002/jcp.22497. Disponible en: 10.1002/jcp.22497.
Stepp, Mary Ann (2006) Corneal integrins and their functions. En: Experimental Eye Research. Vol. 83; No. 1; pp. 3-15; 0014-4835; Disponible en: 10.1016/j.exer.2006.01.010.
Fernández, A.; Moreno, J.; Prósper, F.; García, M.; Echeveste, J. (2008) Regeneración de la superficie ocular: stem cells/células madre y técnicas reconstructivas. En: Anales del Sistema Sanitario de Navarra. Vol. 31; No. 1; pp. 53-69; 1137-6627; Consultado en: 2018/05/02/14:27:44. Disponible en: http://scielo.isciii.es/scielo.php?script=sci_abstract&pid=S1137-66272008000100005&lng=es&nrm=iso&tlng=es.
Goel, Manik; Picciani, Renata G; Lee, Richard K; Bhattacharya, Sanjoy K (2010) Aqueous Humor Dynamics: A Review. En: The Open Ophthalmology Journal. Vol. 4; pp. 52-59; 1874-3641; Consultado en: 2018/05/02/03:36:27. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3032230/. Disponible en: 10.2174/1874364101004010052.
Dawson, D G.; John L. U; Henry F. Edelhauser (2011) Cornea and Sclera. En: Adler's Physiology of the Eye.: W B Saunders Company; 978-0-323-05714-1 978-0-323-08116-0; Consultado en: 2018/05/02/02:21:35. Disponible en: https://www.elsevier.com/books/adlers-physiology-of-the-eye/levin/978-0-323-05714-1.
Güell, J. L. (2015) Cornea. pp. 138 : Karger Medical and Scientific Publishers; 978-3-318-05453-8
Forrester, John V.; Dick, Andrew D.; McMenamin, Paul G.; Roberts, Fiona; Pearlman, Eric (2016) Chapter 4. En: The Eye (Fourth Edition). pp. 157-268.e4; W.B. Saunders; 978-0-7020-5554-6; Consultado en: 2018/05/01/23:26:43. Disponible en: https://www.sciencedirect.com/science/article/pii/B9780702055546000046.
Untitled Document. Consultado en: 2018/05/01/22:20:36. Disponible en: http://med.javeriana.edu.co/oftalmologia/materiales/refraccion.htm.
Mannis, Mark J.; Holland, Edward J. (2016) Cornea E-Book. pp. 2189 : Elsevier Health Sciences; 978-0-323-35758-6
Williams, K. Keven; Noe, Robin L.; Grossniklaus, Hans E.; Drews-Botsch, Carolyn; Edelhauser, Henry F. (1992) Correlation of Histologic Corneal Endothelial Cell Counts With Specular Microscopic Cell Density. En: Archives of Ophthalmology. Vol. 110; No. 8; pp. 1146-1149; 0003-9950; Consultado en: 2018/05/01/20:44:16. Disponible en: https://jamanetwork.com/journals/jamaophthalmology/fullarticle/639808. Disponible en: 10.1001/archopht.1992.01080200126039.
Zhang, Xue; Zeng, Xuhui; Xia, Xiao-Ming; Lingle, Christopher J. (2006) pH-regulated Slo3 K+ Channels: Properties of Unitary Currents. En: The Journal of General Physiology. Vol. 128; No. 3; pp. 301-315; 0022-1295; Consultado en: 2018/04/30/23:27:09. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2151565/. Disponible en: 10.1085/jgp.200609551.
Du, Jintang; Aleff, Ross A.; Soragni, Elisabetta; Kalari, Krishna; Nie, Jinfu; Tang, Xiaojia; Davila, Jaime; Kocher, Jean-Pierre; Patel, Sanjay V.; Gottesfeld, Joel M.; Baratz, Keith H.; Wieben, Eric D. (2015) RNA toxicity and missplicing in the common eye disease fuchs endothelial corneal dystrophy. En: The Journal of Biological Chemistry. Vol. 290; No. 10; pp. 5979-5990; 1083-351X; Disponible en: 10.1074/jbc.M114.621607.
Chung, Doug D.; Frausto, Ricardo F.; Lin, Benjamin R.; Hanser, Evelyn M.; Cohen, Zack; Aldave, Anthony J. (2017) Transcriptomic Profiling of Posterior Polymorphous Corneal Dystrophy. En: Investigative Ophthalmology & Visual Science. Vol. 58; No. 7; pp. 3202-3214; 1552-5783; Disponible en: 10.1167/iovs.17-21423.
Chen, Yinyin; Huang, Kevin; Nakatsu, Martin N.; Xue, Zhigang; Deng, Sophie X.; Fan, Guoping (2013) Identification of novel molecular markers through transcriptomic analysis in human fetal and adult corneal endothelial cells. En: Human Molecular Genetics. Vol. 22; No. 7; pp. 1271-1279; 1460-2083; Disponible en: 10.1093/hmg/dds527.
Griffith, May; Osborne, Rosemarie; Munger, Rejean; Xiong, Xiaojuan; Doillon, Charles J.; Laycock, Noelani L. C.; Hakim, Malik; Song, Ying; Watsky, Mitchell A. (1999) Functional Human Corneal Equivalents Constructed from Cell Lines. En: Science. Vol. 286; No. 5447; pp. 2169-2172; 0036-8075, 1095-9203; Consultado en: 2018/04/30/22:59:12. Disponible en: http://science.sciencemag.org/content/286/5447/2169. Disponible en: 10.1126/science.286.5447.2169.
Dong, De-Li; Bai, Yun-Long; Cai, Ben-Zhi; Donev, Rossen (2016) Chapter Six. En: Advances in Protein Chemistry and Structural Biology. Ion channels as therapeutic targets, part B; Vol. 104; pp. 233-261; Academic Press; Consultado en: 2018/04/30/22:55:31. Disponible en: http://www.sciencedirect.com/science/article/pii/S1876162315000954.
Kaczmarek, Leonard K. (2013) Slack, Slick, and Sodium-Activated Potassium Channels. En: International Scholarly Research Notices. Consultado en: 2018/04/30/02:28:23. Disponible en: https://www.hindawi.com/journals/isrn/2013/354262/.
Eghrari, Allen O.; Riazuddin, S. Amer; Gottsch, John D. (2015) Overview of the Cornea: Structure, Function, and Development. En: Progress in Molecular Biology and Translational Science. Vol. 134; pp. 7-23; 1877-1173; Consultado en: 2018/04/16/22:32:47. Disponible en: https://jhu.pure.elsevier.com/en/publications/overview-of-the-cornea-structure-function-and-development-8. Disponible en: 10.1016/bs.pmbts.2015.04.001.
Kaji, Yuichi; Amano, Shiro; Usui, Tomohiko; Oshika, Tetsuro; Yamashiro, Kenji; Ishida, Susumu; Suzuki, Kaori; Tanaka, Sumiyoshi; Adamis, Anthony P.; Nagai, Ryoji; Horiuchi, Seiko (2003) Expression and function of receptors for advanced glycation end products in bovine corneal endothelial cells. En: Investigative Ophthalmology & Visual Science. Vol. 44; No. 2; pp. 521-528; 0146-0404
Kim, Junghyun; Kim, Chan-Sik; Sohn, Eunjin; Jeong, Il-Ha; Kim, Hyojun; Kim, Jin Sook (2011) Involvement of advanced glycation end products, oxidative stress and nuclear factor-kappaB in the development of diabetic keratopathy. En: Graefe's Archive for Clinical and Experimental Ophthalmology. Vol. 249; No. 4; pp. 529-536; 0721-832X, 1435-702X; Consultado en: 2018/11/02/15:41:51. Disponible en: http://link.springer.com/10.1007/s00417-010-1573-9. Disponible en: 10.1007/s00417-010-1573-9.
Aldrich, Benjamin T.; Schlötzer-Schrehardt, Ursula; Skeie, Jessica M.; Burckart, Kimberlee A.; Schmidt, Gregory A.; Reed, Cynthia R.; Zimmerman, M. Bridget; Kruse, Friedrich E.; Greiner, Mark A. (2017) Mitochondrial and Morphologic Alterations in Native Human Corneal Endothelial Cells Associated With Diabetes Mellitus. En: Investigative Opthalmology & Visual Science. Vol. 58; No. 4; pp. 2130 1552-5783; Consultado en: 2018/11/02/15:06:59. Disponible en: http://iovs.arvojournals.org/article.aspx?doi=10.1167/iovs.16-21094. Disponible en: 10.1167/iovs.16-21094.
Chloride channels | Ion channels | IUPHAR/BPS Guide to PHARMACOLOGY. Consultado en: 2018/10/27/04:00:14. Disponible en: http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=120.
(2009) Chloride channels. En: British Journal of Pharmacology. Vol. 158; No. Suppl 1; pp. S130-S134; 0007-1188; Consultado en: 2018/10/27/02:52:18. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2884561/. Disponible en: 10.1111/j.1476-5381.2009.00503_6.x.
Stauber, Tobias; Novarino, Gaia; Jentsch, Thomas J.; Alvarez-Leefmans, F. Javier; Delpire, Eric (2010) Chapter 12. En: Physiology and Pathology of Chloride Transporters and Channels in the Nervous System. pp. 209-231; San Diego: Academic Press; 978-0-12-374373-2; Consultado en: 2018/10/27/02:29:02. Disponible en: http://www.sciencedirect.com/science/article/pii/B9780123743732000121.
Storr-Paulsen, Allan; Singh, Amardeep; Jeppesen, Helene; Norregaard, Jens C.; Thulesen, Jesper (2014) Corneal endothelial morphology and central thickness in patients with type II diabetes mellitus. En: Acta Ophthalmologica. Vol. 92; No. 2; pp. 158-160; 1755375X; Consultado en: 2018/10/22/21:33:23. Disponible en: http://doi.wiley.com/10.1111/aos.12064. Disponible en: 10.1111/aos.12064.
Gees, Maarten; Colsoul, Barbara; Nilius, Bernd (2010) The Role of Transient Receptor Potential Cation Channels in Ca2+ Signaling. En: Cold Spring Harbor Perspectives in Biology. Vol. 2; No. 10; 1943-0264; Consultado en: 2018/10/18/22:04:51. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2944357/. Disponible en: 10.1101/cshperspect.a003962.
Mergler, Stefan; Valtink, Monika; Takayoshi, Sumioka; Okada, Yuka; Miyajima, Masayasu; Saika, Shizuya; Reinach, Peter S. (2014) Temperature-Sensitive Transient Receptor Potential Channels in Corneal Tissue Layers and Cells. En: Ophthalmic Research. Vol. 52; No. 3; pp. 151-159; 0030-3747, 1423-0259; Consultado en: 2018/10/18/21:25:33. Disponible en: https://www.karger.com/Article/FullText/365334. Disponible en: 10.1159/000365334.
Zeng, Bo; Chen, Gui-Lan; Garcia-Vaz, Eliana; Bhandari, Sunil; Daskoulidou, Nikoleta; Berglund, Lisa M.; Jiang, Hongni; Hallett, Thomas; Zhou, Lu-Ping; Huang, Li; Xu, Zi-Hao; Nair, Viji; Nelson, Robert G.; Ju, Wenjun; Kretzler, Matthias; Atkin, Stephen L.; Gomez, Maria F.; Xu, Shang-Zhong (2017) ORAI channels are critical for receptor-mediated endocytosis of albumin. En: Nature Communications. Vol. 8; No. 1; pp. 1920 2041-1723; Consultado en: 2018/10/18/21:00:17. Disponible en: https://www.nature.com/articles/s41467-017-02094-y. Disponible en: 10.1038/s41467-017-02094-y.
Mergler, S.; Valtink, M.; Engelmann, K.; Pleyer, U. (2008) New Insights Into Electrophysiology and Functional Transient Receptor Potential (Trp) Channel Expression in the Corneal Endothelium. En: Investigative Ophthalmology & Visual Science. Vol. 49; No. 13; pp. 3939-3939; 1552-5783; Consultado en: 2018/10/18/19:58:56. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2379333.
Mergler, Stefan; Valtink, Monika; Coulson-Thomas, Vivien Jane; Lindemann, Dirk; Reinach, Peter S.; Engelmann, Katrin; Pleyer, Uwe (2010) TRPV channels mediate temperature-sensing in human corneal endothelial cells. En: Experimental Eye Research. Vol. 90; No. 6; pp. 758-770; 1096-0007; Disponible en: 10.1016/j.exer.2010.03.010.
Torricelli, Andre A. M.; Wilson, Steven E. (2014) Cellular and extracellular matrix modulation of corneal stromal opacity. En: Experimental eye research. Vol. 0; pp. 151-160; 0014-4835; Consultado en: 2018/10/17/02:30:12. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4259857/. Disponible en: 10.1016/j.exer.2014.09.013.
Robbins, Ashlee; Kurose, Masayuki; Winterson, Barbara J.; Meng, Ian D. (2012) Menthol Activation of Corneal Cool Cells Induces TRPM8-Mediated Lacrimation but Not Nociceptive Responses in Rodents. En: Investigative Ophthalmology & Visual Science. Vol. 53; No. 11; pp. 7034-7042; 1552-5783; Disponible en: http://dx.doi.org/10.1167/iovs.12-10025. Disponible en: 10.1167/iovs.12-10025.
Huang, Da Wei; Sherman, Brad T; Tan, Qina; Collins, Jack R; Alvord, W Gregory; Roayaei, Jean; Stephens, Robert; Baseler, Michael W; Lane, H Clifford; Lempicki, Richard A (2007) The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists. En: Genome Biology. Vol. 8; No. 9; pp. R183 1465-6906; Consultado en: 2018/09/25/06:30:44. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2375021/. Disponible en: 10.1186/gb-2007-8-9-r183.
Nygaard, Vegard; Rødland, Einar Andreas; Hovig, Eivind (2016) Methods that remove batch effects while retaining group differences may lead to exaggerated confidence in downstream analyses. En: Biostatistics (Oxford, England). Vol. 17; No. 1; pp. 29-39; 1465-4644; Consultado en: 2018/09/25/06:25:12. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4679072/. Disponible en: 10.1093/biostatistics/kxv027.
Iwamoto, Takeo; Devoe, A. Gerard (1971) Electron Microscopic Studies on Fuchs' Combined Dystrophy : I. Posterior Portion of the Cornea. En: Investigative Ophthalmology & Visual Science. Vol. 10; No. 1; pp. 9-28; 1552-5783; Consultado en: 2018/09/25/01:38:10. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2158325.
Patel, Sangita P.; Bourne, William M. (2009) Corneal Endothelial Cell Proliferation: A Function of Cell Density. En: Investigative ophthalmology & visual science. Vol. 50; No. 6; pp. 2742-2746; 0146-0404; Consultado en: 2018/08/28/20:52:19. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2728347/. Disponible en: 10.1167/iovs.08-3002.
Corneal Endothelial Cell Proliferation: A Function of Cell Density. Consultado en: 2018/08/28/20:51:09. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2728347/.
Joyce, Nancy C. (2003) Proliferative capacity of the corneal endothelium. En: Progress in Retinal and Eye Research. Vol. 22; No. 3; pp. 359-389; 1350-9462
Mergler, Stefan; Garreis, Fabian; Sahlmüller, Monika; Reinach, Peter S.; Paulsen, Friedrich; Pleyer, Uwe (2011) Thermosensitive transient receptor potential channels (thermo-TRPs) in human corneal epithelial cells. En: Journal of Cellular Physiology. Vol. 226; No. 7; pp. 1828-1842; 0021-9541; Consultado en: 2018/07/17/02:41:58. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3072442/. Disponible en: 10.1002/jcp.22514.
Reinach, Peter S.; Mergler, Stefan; Okada, Yuka; Saika, Shizuya (2015) Ocular transient receptor potential channel function in health and disease. En: BMC Ophthalmology. Vol. 15; No. 1; pp. 153 1471-2415; Consultado en: 2018/07/16/18:30:34. Disponible en: https://doi.org/10.1186/s12886-015-0135-7. Disponible en: 10.1186/s12886-015-0135-7.
Venkatachalam, Kartik; Montell, Craig (2007) TRP Channels. En: Annual review of biochemistry. Vol. 76; pp. 387-417; 0066-4154; Consultado en: 2018/07/16/16:27:34. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4196875/. Disponible en: 10.1146/annurev.biochem.75.103004.142819.
TRP Channels | Annual Review of Biochemistry. Consultado en: 2018/07/16/16:25:31. Disponible en: https://www.annualreviews.org/doi/abs/10.1146/annurev.biochem.75.103004.142819?rfr_dat=cr_pub%3Dpubmed&url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org&journalCode=biochem.
Lopez, Jose J.; Albarran, Letizia; Gómez, Luis J.; Smani, Tarik; Salido, Gines M.; Rosado, Juan A. (2016) Molecular modulators of store-operated calcium entry. En: Biochimica et Biophysica Acta (BBA). Vol. 1863; No. 8; pp. 2037-2043; 0167-4889; Consultado en: 2018/06/06/13:40:06. Disponible en: http://www.sciencedirect.com/science/article/pii/S0167488916301240. Disponible en: 10.1016/j.bbamcr.2016.04.024.
Schmedt, Thore; Silva, Mariana Mazzini; Ziaei, Alireza; Jurkunas, Ula (2012) Molecular Bases of Corneal Endothelial Dystrophies. En: Experimental Eye Research. Vol. 95; No. 1; pp. 24-34; 0014-4835; Consultado en: 2018/06/06/13:01:52. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3273549/. Disponible en: 10.1016/j.exer.2011.08.002.
Putney, James W.; Steinckwich-Besançon, Natacha; Numaga-Tomita, Takuro; Davis, Felicity M.; Desai, Pooja N.; D’Agostin, Diane M.; Wu, Shilan; Bird, Gary S. (2017) The Functions of Store-operated Calcium Channels. En: Biochimica et biophysica acta. Vol. 1864; No. 6; pp. 900-906; 0006-3002; Consultado en: 2018/06/03/22:55:44. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5420336/. Disponible en: 10.1016/j.bbamcr.2016.11.028.
Mergler, Stefan; Valtink, Monika; Taetz, Katrin; Sahlmüller, Monika; Fels, Gabriele; Reinach, Peter S.; Engelmann, Katrin; Pleyer, Uwe (2011) Characterization of transient receptor potential vanilloid channel 4 (TRPV4) in human corneal endothelial cells. En: Experimental Eye Research. Vol. 93; No. 5; pp. 710-719; 1096-0007; Disponible en: 10.1016/j.exer.2011.09.021.
Prakriya, Murali; Lewis, Richard S. (2015) Store-Operated Calcium Channels. En: Physiological Reviews. Vol. 95; No. 4; pp. 1383-1436; 0031-9333; Consultado en: 2018/06/03/22:36:14. Disponible en: https://www.physiology.org/doi/abs/10.1152/physrev.00020.2014. Disponible en: 10.1152/physrev.00020.2014.
Hong, Show-Jen; Wu, Kwou-Yeung; Wang, Hwei-Zu; Fong, Jim. C (2003) Change of Cytosolic Ca2+ Mobility in Cultured Bovine Corneal Endothelial Cells by Endothelin-1. En: Journal of Ocular Pharmacology and Therapeutics. Vol. 19; No. 1; pp. 1-9; 1080-7683; Consultado en: 2018/06/03/02:56:10. Disponible en: https://www.liebertpub.com/doi/abs/10.1089/108076803762718060. Disponible en: 10.1089/108076803762718060.
Mergler, Stefan; Dannowski, Haike; Bednarz, Jürgen; Engelmann, Katrin; Hartmann, Christian; Pleyer, Uwe (2003) Calcium influx induced by activation of receptor tyrosine kinases in SV40-transfected human corneal endothelial cells. En: Experimental Eye Research. Vol. 77; No. 4; pp. 485-495; 0014-4835
Harrison, Theresa A.; He, Zhiguo; Boggs, Kristin; Thuret, Gilles; Liu, Hong-Xiang; Defoe, Dennis M. (2016) Corneal endothelial cells possess an elaborate multipolar shape to maximize the basolateral to apical membrane area. En: Molecular Vision. Vol. 22; pp. 31-39; 1090-0535; Consultado en: 2018/06/03/00:10:48. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4814271/.
Meeting, Kyoto Cornea Club (1997) Current Opinions in the Kyoto Cornea Club: Proceedings of the First Annual Meeting of the Kyoto Cornea Club, Kyoto, Japan, December 1-2, 1995. pp. 108 : Kugler Publications; 978-90-6299-138-9
Tinggi, Ujang (2008) Selenium: its role as antioxidant in human health. En: Environmental Health and Preventive Medicine. Vol. 13; No. 2; pp. 102-108; 1342-078X, 1347-4715; Consultado en: 2019/02/04/16:53:41. Disponible en: http://link.springer.com/10.1007/s12199-007-0019-4. Disponible en: 10.1007/s12199-007-0019-4.
Bresgen, Nikolaus; Eckl, Peter (2015) Oxidative Stress and the Homeodynamics of Iron Metabolism. En: Biomolecules. Vol. 5; No. 2; pp. 808-847; 2218-273X; Consultado en: 2019/02/04/16:50:26. Disponible en: http://www.mdpi.com/2218-273X/5/2/808. Disponible en: 10.3390/biom5020808.
Glaser, Nicole; Little, Christopher; Lo, Weei; Cohen, Michael; Tancredi, Daniel; Wulff, Heike; O'Donnell, Martha (2017) Treatment with the KCa3.1 inhibitor TRAM-34 during diabetic ketoacidosis reduces inflammatory changes in the brain: TRAM-34 reduces DKA-related brain inflammation. En: Pediatric Diabetes. Vol. 18; No. 5; pp. 356-366; 1399543X; Consultado en: 2019/02/01/17:22:20. Disponible en: http://doi.wiley.com/10.1111/pedi.12396. Disponible en: 10.1111/pedi.12396.
Huang, Chunling; Pollock, Carol A.; Chen, Xin-Ming (2014) Role of the potassium channel KCa3.1 in diabetic nephropathy. En: Clinical Science. Vol. 127; No. 7; pp. 423-433; 0143-5221, 1470-8736; Consultado en: 2019/02/01/17:01:29. Disponible en: http://clinsci.org/lookup/doi/10.1042/CS20140075. Disponible en: 10.1042/CS20140075.
Tandon, A.; Tovey, J. C. K.; Sharma, A.; Gupta, R.; Mohan, R. R. (2010) Role of transforming growth factor Beta in corneal function, biology and pathology. En: Current Molecular Medicine. Vol. 10; No. 6; pp. 565-578; 1875-5666
Kaji, Y. (2005) Prevention of diabetic keratopathy. En: The British Journal of Ophthalmology. Vol. 89; No. 3; pp. 254-255; 0007-1161; Disponible en: 10.1136/bjo.2004.055541.
Thomas, Merlin C.; Brownlee, Michael; Susztak, Katalin; Sharma, Kumar; Jandeleit-Dahm, Karin A. M.; Zoungas, Sophia; Rossing, Peter; Groop, Per-Henrik; Cooper, Mark E. (2015) Diabetic kidney disease. En: Nature Reviews Disease Primers. pp. 15018 2056-676X; Consultado en: 2019/02/01/15:47:16. Disponible en: http://www.nature.com/articles/nrdp201518. Disponible en: 10.1038/nrdp.2015.18.
Yan, Liang-Jun (2018) Redox imbalance stress in diabetes mellitus: Role of the polyol pathway. En: Animal Models and Experimental Medicine. Vol. 1; No. 1; pp. 7-13; 2576-2095; Disponible en: 10.1002/ame2.12001.
Forbes, Josephine M.; Cooper, Mark E. (2013) Mechanisms of diabetic complications. En: Physiological Reviews. Vol. 93; No. 1; pp. 137-188; 1522-1210; Disponible en: 10.1152/physrev.00045.2011.
Goyer, Benjamin; Thériault, Mathieu; Gendron, Sébastien P.; Brunette, Isabelle; Rochette, Patrick J.; Proulx, Stéphanie (2018) Extracellular Matrix and Integrin Expression Profiles in Fuchs Endothelial Corneal Dystrophy Cells and Tissue Model. En: Tissue Engineering. Part A. Vol. 24; No. 7-8; pp. 607-615; 1937-335X; Disponible en: 10.1089/ten.TEA.2017.0128.
Okumura, Naoki; Minamiyama, Ryuki; Ho, Leona Ty; Kay, EunDuck P.; Kawasaki, Satoshi; Tourtas, Theofilos; Schlötzer-Schrehardt, Ursula; Kruse, Friedrich E.; Young, Robert D.; Quantock, Andrew J.; Kinoshita, Shigeru; Koizumi, Noriko (2015) Involvement of ZEB1 and Snail1 in excessive production of extracellular matrix in Fuchs endothelial corneal dystrophy. En: Laboratory Investigation; a Journal of Technical Methods and Pathology. Vol. 95; No. 11; pp. 1291-1304; 1530-0307; Disponible en: 10.1038/labinvest.2015.111.
Cui, Zekai; Zeng, Qiaolang; Guo, Yonglong; Liu, Shiwei; Wang, Peiyuan; Xie, Mengyuan; Chen, Jiansu; Krahe, Ralf (2018) Pathological molecular mechanism of symptomatic late-onset Fuchs endothelial corneal dystrophy by bioinformatic analysis. En: PLOS ONE. Vol. 13; No. 5; pp. e0197750 1932-6203; Consultado en: 2019/02/01/04:18:13. Disponible en: http://dx.plos.org/10.1371/journal.pone.0197750. Disponible en: 10.1371/journal.pone.0197750.
Meekins, Landon C.; Rosado-Adames, Noel; Maddala, Rupalatha; Zhao, Jiagang J.; Rao, Ponugoti V.; Afshari, Natalie A. (2016) Corneal Endothelial Cell Migration and Proliferation Enhanced by Rho Kinase (ROCK) Inhibitors in In Vitro and In Vivo Models. En: Investigative Opthalmology & Visual Science. Vol. 57; No. 15; pp. 6731 1552-5783; Consultado en: 2019/02/01/04:03:47. Disponible en: http://iovs.arvojournals.org/article.aspx?doi=10.1167/iovs.16-20414. Disponible en: 10.1167/iovs.16-20414.
Soh, Yu Qiang; Peh, Gary; George, Benjamin Lawrence; Seah, Xin Yi; Primalani, Nishal Kishinchand; Adnan, Khadijah; Mehta, Jodhbir Singh (2016) Predicative Factors for Corneal Endothelial Cell Migration. En: Investigative Opthalmology & Visual Science. Vol. 57; No. 2; pp. 338 1552-5783; Consultado en: 2019/02/01/00:13:38. Disponible en: http://iovs.arvojournals.org/article.aspx?doi=10.1167/iovs.15-18300. Disponible en: 10.1167/iovs.15-18300.
Li, Shimin; Kim, Edward; Bonanno, Joseph A. (2016) Fluid transport by the cornea endothelium is dependent on buffering lactic acid efflux. En: American Journal of Physiology-Cell Physiology. Vol. 311; No. 1; pp. C116-C126; 0363-6143, 1522-1563; Consultado en: 2019/01/31/23:49:04. Disponible en: http://www.physiology.org/doi/10.1152/ajpcell.00095.2016. Disponible en: 10.1152/ajpcell.00095.2016.
Nguyen, Tracy T.; Bonanno, Joseph A. (2012) Lactate-H + Transport Is a Significant Component of the In Vivo Corneal Endothelial Pump. En: Investigative Opthalmology & Visual Science. Vol. 53; No. 4; pp. 2020 1552-5783; Consultado en: 2019/01/31/23:43:55. Disponible en: http://iovs.arvojournals.org/article.aspx?doi=10.1167/iovs.12-9475. Disponible en: 10.1167/iovs.12-9475.
Gabelt, B'Ann True; Paul L. Kaufman; Production and Flow of Aqueous Humor. En: Adler's Physiology of the Eye.: W B Saunders Company; 978-0-323-05714-1 978-0-323-08116-0
Riordan-Eva, Paul; Riordan-Eva, Paul; Augsburger, James J. (2017) Anatomy & Embryology of the Eye. En: Vaughan & Asbury's General Ophthalmology, 19e. No. Book, Section; New York, NY: McGraw-Hill Education; Consultado en: 2019/01/30/. Disponible en: accessmedicine.mhmedical.com/content.aspx?aid=1144466589.
Doutch, James J.; Quantock, Andrew J.; Joyce, Nancy C.; Meek, Keith M. (2012) Ultraviolet Light Transmission through the Human Corneal Stroma Is Reduced in the Periphery. En: Biophysical Journal. Vol. 102; No. 6; pp. 1258-1264; 00063495; Consultado en: 2019/01/30/17:36:55. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0006349512002263. Disponible en: 10.1016/j.bpj.2012.02.023.
Shih, K. Co; Lam, K. S.-L.; Tong, L. (2017) A systematic review on the impact of diabetes mellitus on the ocular surface. En: Nutrition & Diabetes. Vol. 7; No. 3; pp. e251 2044-4052; Disponible en: 10.1038/nutd.2017.4.
A systematic review on the impact of diabetes mellitus on the ocular surface | Nutrition & Diabetes. Consultado en: 2019/01/27/23:42:54. Disponible en: https://www.nature.com/articles/nutd20174.
Diabetes. Consultado en: 2019/01/27/23:04:50. Disponible en: https://www.who.int/es/news-room/fact-sheets/detail/diabetes.
Deleterious impact of hyperglycemia on cystic fibrosis airway ion transport and epithelial repair. Consultado en: 2019/01/10/01:22:33. Disponible en: https://www.sciencedirect.com/science/article/pii/S1569199315001022.
Huang, Chunling; Pollock, Carol A.; Chen, Xin-Ming (2014) High Glucose Induces CCL20 in Proximal Tubular Cells via Activation of the KCa3.1 Channel. En: PLOS ONE. Vol. 9; No. 4; pp. e95173 1932-6203; Consultado en: 2019/01/10/01:22:04. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0095173. Disponible en: 10.1371/journal.pone.0095173.
Huang, Xi; Jan, Lily Yeh (2014) Targeting potassium channels in cancer. En: The Journal of Cell Biology. Vol. 206; No. 2; pp. 151-162; 1540-8140; Disponible en: 10.1083/jcb.201404136.
Shao, Zhifei; Makinde, Toluwalope O.; Agrawal, Devendra K. (2011) Calcium-Activated Potassium Channel KCa3.1 in Lung Dendritic Cell Migration. En: American Journal of Respiratory Cell and Molecular Biology. Vol. 45; No. 5; pp. 962-968; 1044-1549; Consultado en: 2019/01/10/01:17:33. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3262686/. Disponible en: 10.1165/rcmb.2010-0514OC.
Suarez, Jorge; Hu, Yong; Makino, Ayako; Fricovsky, Eduardo; Wang, Hong; Dillmann, Wolfgang H. (2008) Alterations in mitochondrial function and cytosolic calcium induced by hyperglycemia are restored by mitochondrial transcription factor A in cardiomyocytes. En: American Journal of Physiology-Cell Physiology. Vol. 295; No. 6; pp. C1561-C1568; 0363-6143; Consultado en: 2018/12/14/09:47:18. Disponible en: https://www.physiology.org/doi/full/10.1152/ajpcell.00076.2008. Disponible en: 10.1152/ajpcell.00076.2008.
Lu, Luo (2006) Stress-induced corneal epithelial apoptosis mediated by K+ channel activation. En: Progress in Retinal and Eye Research. Vol. 25; No. 6; pp. 515-538; 1350-9462; Disponible en: 10.1016/j.preteyeres.2006.07.004.
Kernt, Marcus; Hirneiss, C.; Neubauer, A. S.; Kampik, A. (2010) Minocycline is cytoprotective in human corneal endothelial cells and induces anti-apoptotic B-cell CLL/lymphoma 2 (Bcl-2) and X-linked inhibitor of apoptosis (XIAP). En: The British Journal of Ophthalmology. Vol. 94; No. 7; pp. 940-946; 1468-2079; Disponible en: 10.1136/bjo.2009.165092.
Brownlee, Michael (2005) The pathobiology of diabetic complications: a unifying mechanism. En: Diabetes. Vol. 54; No. 6; pp. 1615-1625; 0012-1797
Ichim, Gabriel; Lopez, Jonathan; Ahmed, Shafiq U.; Muthalagu, Nathiya; Giampazolias, Evangelos; Delgado, M. Eugenia; Haller, Martina; Riley, Joel S.; Mason, Susan M.; Athineos, Dimitris; Parsons, Melissa J.; van de Kooij, Bert; Bouchier-Hayes, Lisa; Chalmers, Anthony J.; Rooswinkel, Rogier W.; Oberst, Andrew; Blyth, Karen; Rehm, Markus; Murphy, Daniel J.; Tait, Stephen W.G. (2015) Limited Mitochondrial Permeabilization Causes DNA Damage and Genomic Instability in the Absence of Cell Death. En: Molecular Cell. Vol. 57; No. 5; pp. 860-872; 10972765; Consultado en: 2018/11/26/14:33:48. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S1097276515000192. Disponible en: 10.1016/j.molcel.2015.01.018.
Cho, Dong-Hyung; Nakamura, Tomohiro; Fang, Jianguo; Cieplak, Piotr; Godzik, Adam; Gu, Zezong; Lipton, Stuart A. (2009) S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. En: Science (New York, N.Y.). Vol. 324; No. 5923; pp. 102-105; 1095-9203; Disponible en: 10.1126/science.1171091.
Vanden Berghe, T.; Vanlangenakker, N.; Parthoens, E.; Deckers, W.; Devos, M.; Festjens, N.; Guerin, C. J.; Brunk, U. T.; Declercq, W.; Vandenabeele, P. (2010) Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. En: Cell Death and Differentiation. Vol. 17; No. 6; pp. 922-930; 1476-5403; Disponible en: 10.1038/cdd.2009.184.
Marchitti, Satori A; Chen, Ying; Thompson, David C; Vasiliou, Vasilis (2011) Ultraviolet Radiation: Cellular Antioxidant Response and the Role of Ocular Aldehyde Dehydrogenase Enzymes:. En: Eye & Contact Lens: Science & Clinical Practice. Vol. 37; No. 4; pp. 206-213; 1542-2321; Consultado en: 2018/11/15/13:11:40. Disponible en: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00140068-201107000-00007. Disponible en: 10.1097/ICL.0b013e3182212642.
Nita, Małgorzata; Grzybowski, Andrzej (2016) The Role of the Reactive Oxygen Species and Oxidative Stress in the Pathomechanism of the Age-Related Ocular Diseases and Other Pathologies of the Anterior and Posterior Eye Segments in Adults. En: Oxidative Medicine and Cellular Longevity. Vol. 2016; pp. 1-23; 1942-0900, 1942-0994; Consultado en: 2018/11/15/12:57:37. Disponible en: http://www.hindawi.com/journals/omcl/2016/3164734/. Disponible en: 10.1155/2016/3164734.
Zhu, Cheng; Joyce, Nancy C. (2004) Proliferative response of corneal endothelial cells from young and older donors. En: Investigative Ophthalmology & Visual Science. Vol. 45; No. 6; pp. 1743-1751; 0146-0404
Senoo, T.; Joyce, N. C. (2000) Cell cycle kinetics in corneal endothelium from old and young donors. En: Investigative Ophthalmology & Visual Science. Vol. 41; No. 3; pp. 660-667; 0146-0404
Valavanidis, Athanasios; Vlachogianni, Thomais; Fiotakis, Constantinos (2009) 8-hydroxy-2'-deoxyguanosine (8-OHdG): A critical biomarker of oxidative stress and carcinogenesis. En: Journal of Environmental Science and Health. Part C, Environmental Carcinogenesis & Ecotoxicology Reviews. Vol. 27; No. 2; pp. 120-139; 1532-4095; Disponible en: 10.1080/10590500902885684.
Joyce, Nancy C.; Zhu, Cheng C.; Harris, Deshea L. (2009) Relationship among Oxidative Stress, DNA Damage, and Proliferative Capacity in Human Corneal Endothelium. En: Investigative Ophthalmology & Visual Science. Vol. 50; No. 5; pp. 2116-2122; 1552-5783; Consultado en: 2018/11/15/04:08:10. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2126584. Disponible en: 10.1167/iovs.08-3007.
Kaczmarek, Leonard K. (2013) Slack, Slick, and Sodium-Activated Potassium Channels. En: International Scholarly Research Notices. Consultado en: 2018/11/05/04:27:01. Disponible en: https://www.hindawi.com/journals/isrn/2013/354262/.
Paulais, Marc; Lachheb, Sahran; Teulon, Jacques (2006) A Na+-and Cl−-activated K+ Channel in the Thick Ascending Limb of Mouse Kidney. En: The Journal of General Physiology. Vol. 127; No. 2; pp. 205-215; 0022-1295, 1540-7748; Consultado en: 2018/11/05/04:22:14. Disponible en: http://jgp.rupress.org/content/127/2/205. Disponible en: 10.1085/jgp.200509360.
Hayashi, Mikio; Wang, Jing; Hede, Susanne E.; Novak, Ivana (2012) An intermediate-conductance Ca2+-activated K+ channel is important for secretion in pancreatic duct cells. En: American Journal of Physiology. Cell Physiology. Vol. 303; No. 2; pp. C151-159; 1522-1563; Disponible en: 10.1152/ajpcell.00089.2012.
Hipfner, David R.; Cohen, Stephen M. (2003) The Drosophila sterile-20 kinase slik controls cell proliferation and apoptosis during imaginal disc development. En: PLoS biology. Vol. 1; No. 2; pp. E35 1545-7885; Disponible en: 10.1371/journal.pbio.0000035.
Dolga, A M; Terpolilli, N; Kepura, F; Nijholt, I M; Knaus, H-G; D'Orsi, B; Prehn, J H M; Eisel, U L M; Plant, T; Plesnila, N; Culmsee, C (2011) KCa2 channels activation prevents [Ca2+]i deregulation and reduces neuronal death following glutamate toxicity and cerebral ischemia. En: Cell Death & Disease. Vol. 2; No. 4; pp. e147 2041-4889; Consultado en: 2018/11/05/03:17:25. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3122061/. Disponible en: 10.1038/cddis.2011.30.
Takai, Jun; Santu, Alexandra; Zheng, Haifeng; Koh, Sang Don; Ohta, Masanori; Filimban, Linda M.; Lemaître, Vincent; Teraoka, Ryutaro; Jo, Hanjoong; Miura, Hiroto (2013) Laminar shear stress upregulates endothelial Ca²⁺-activated K⁺ channels KCa2.3 and KCa3.1 via a Ca²⁺/calmodulin-dependent protein kinase kinase/Akt/p300 cascade. En: American Journal of Physiology. Heart and Circulatory Physiology. Vol. 305; No. 4; pp. H484-493; 1522-1539; Disponible en: 10.1152/ajpheart.00642.2012.
Tajhya, Rajeev B.; Hu, Xueyou; Tanner, Mark R.; Huq, Redwan; Kongchan, Natee; Neilson, Joel R.; Rodney, George G.; Horrigan, Frank T.; Timchenko, Lubov T.; Beeton, Christine (2016) Functional KCa1.1 channels are crucial for regulating the proliferation, migration and differentiation of human primary skeletal myoblasts. En: Cell Death & Disease. Vol. 7; No. 10; pp. e2426 2041-4889; Disponible en: 10.1038/cddis.2016.324.
Potier, M; Chantome, A; Joulin, V; Girault, A; Roger, S; Besson, P; Jourdan, M-L; LeGuennec, J-Y; Bougnoux, P; Vandier, C (2011) The SK3/KCa2.3 potassium channel is a new cellular target for edelfosine. En: British Journal of Pharmacology. Vol. 162; No. 2; pp. 464-479; 0007-1188; Consultado en: 2018/11/05/02:33:22. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3031066/. Disponible en: 10.1111/j.1476-5381.2010.01044.x.
Schwab, Albrecht; Fabian, Anke; Hanley, Peter J.; Stock, Christian (2012) Role of Ion Channels and Transporters in Cell Migration. En: Physiological Reviews. Vol. 92; No. 4; pp. 1865-1913; 0031-9333; Consultado en: 2018/11/04/22:04:35. Disponible en: https://www.physiology.org/doi/full/10.1152/physrev.00018.2011. Disponible en: 10.1152/physrev.00018.2011.
Ouadid-Ahidouch, Halima; Ahidouch, Ahmed (2013) K+ channels and cell cycle progression in tumor cells. En: Frontiers in Physiology. Vol. 4; 1664-042X; Consultado en: 2018/11/04/21:48:41. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3747328/. Disponible en: 10.3389/fphys.2013.00220.
Santi, Celia M.; Butler, Alice; Kuhn, Julia; Wei, Aguan; Salkoff, Lawrence (2009) Bovine and Mouse SLO3 K+ Channels. En: The Journal of Biological Chemistry. Vol. 284; No. 32; pp. 21589-21598; 0021-9258; Consultado en: 2018/11/04/17:56:39. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2755883/. Disponible en: 10.1074/jbc.M109.015040.
Song, Penghong; Du, Yehui; Song, Wenfeng; Chen, Hao; Xuan, Zefeng; Zhao, Long; Chen, Jun; Chen, Jian; Guo, Danjing; Jin, Cheng; Zhao, Yongchao; Tuo, Biguang; Zheng, Shusen (2017) KCa3.1 as an Effective Target for Inhibition of Growth and Progression of Intrahepatic Cholangiocarcinoma. En: Journal of Cancer. Vol. 8; No. 9; pp. 1568-1578; 1837-9664; Consultado en: 2018/11/04/17:46:18. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5535712/. Disponible en: 10.7150/jca.18697.
Jackson, William F. (2010) KV1.3: A new therapeutic target to control vascular smooth muscle cell proliferation. En: Arteriosclerosis, thrombosis, and vascular biology. Vol. 30; No. 6; pp. 1073-1074; 1079-5642; Consultado en: 2018/11/04/05:42:24. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2891047/. Disponible en: 10.1161/ATVBAHA.110.206565.
Vandorpe, D. H.; Shmukler, B. E.; Jiang, L.; Lim, B.; Maylie, J.; Adelman, J. P.; de Franceschi, L.; Cappellini, M. D.; Brugnara, C.; Alper, S. L. (1998) cDNA cloning and functional characterization of the mouse Ca2+-gated K+ channel, mIK1. Roles in regulatory volume decrease and erythroid differentiation. En: The Journal of Biological Chemistry. Vol. 273; No. 34; pp. 21542-21553; 0021-9258
Chandy, K. George; Wulff, Heike; Beeton, Christine; Pennington, Michael; Gutman, George A.; Cahalan, Michael D. (2004) K+ channels as targets for specific immunomodulation. En: Trends in Pharmacological Sciences. Vol. 25; No. 5; pp. 280-289; 0165-6147; Disponible en: 10.1016/j.tips.2004.03.010.
Wei, Aguan D.; Gutman, George A.; Aldrich, Richard; Chandy, K. George; Grissmer, Stephan; Wulff, Heike (2005) International Union of Pharmacology. LII. Nomenclature and Molecular Relationships of Calcium-Activated Potassium Channels. En: Pharmacological Reviews. Vol. 57; No. 4; pp. 463-472; 0031-6997, 1521-0081; Consultado en: 2018/11/04/03:53:18. Disponible en: http://pharmrev.aspetjournals.org/content/57/4/463. Disponible en: 10.1124/pr.57.4.9.
International Union of Pharmacology. LII. Nomenclature and Molecular Relationships of Calcium-Activated Potassium Channels | Pharmacological Reviews. Consultado en: 2018/11/04/03:17:27. Disponible en: http://pharmrev.aspetjournals.org/content/57/4/463.
Ha, Tal Soo; Heo, Moon-Sun; Park, Chul-Seung (2004) Functional Effects of Auxiliary β4-Subunit on Rat Large-Conductance Ca2+-Activated K+ Channel. En: Biophysical Journal. Vol. 86; No. 5; pp. 2871-2882; 0006-3495; Consultado en: 2018/11/04/03:04:15. Disponible en: http://www.sciencedirect.com/science/article/pii/S0006349504743398. Disponible en: 10.1016/S0006-3495(04)74339-8.
Guéguinou, Maxime; Chantôme, Aurélie; Fromont, Gaëlle; Bougnoux, Philippe; Vandier, Christophe; Potier-Cartereau, Marie (2014) KCa and Ca2+ channels: The complex thought. En: Biochimica et Biophysica Acta (BBA). Calcium Signaling in Health and Disease; Vol. 1843; No. 10; pp. 2322-2333; 0167-4889; Consultado en: 2018/11/03/22:56:19. Disponible en: http://www.sciencedirect.com/science/article/pii/S0167488914000834. Disponible en: 10.1016/j.bbamcr.2014.02.019.
Mobasseri, Majid; Shirmohammadi, Masoud; Amiri, Tarlan; Vahed, Nafiseh; Hosseini Fard, Hossein; Ghojazadeh, Morteza (2020) Prevalence and incidence of type 1 diabetes in the world: a systematic review and meta-analysis. En: Health Promotion Perspectives. Vol. 10; No. 2; pp. 98-115; 2228-6497; Consultado en: 2020/08/17/12:24:10. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7146037/. Disponible en: 10.34172/hpp.2020.18.
Lindner, L. M. E.; Rathmann, W.; Rosenbauer, J. (2018) Inequalities in glycaemic control, hypoglycaemia and diabetic ketoacidosis according to socio-economic status and area-level deprivation in Type 1 diabetes mellitus: a systematic review. En: Diabetic Medicine. Vol. 35; No. 1; pp. 12-32; 1464-5491; Consultado en: 2020/08/17/13:14:29. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1111/dme.13519. Disponible en: 10.1111/dme.13519.
Pandova, Maya Georgieva (2019) Diabetic Retinopathy and Blindness: An Epidemiological Overview. En: Visual Impairment and Blindness. Consultado en: 2020/08/17/13:17:43. Disponible en: https://www.intechopen.com/online-first/diabetic-retinopathy-and-blindness-an-epidemiological-overview. Disponible en: 10.5772/intechopen.88756.
Fang, Michael; Echouffo-Tcheugui, Justin B.; Selvin, Elizabeth (2020) Burden of Complications in U.S. Adults With Young-Onset Type 2 or Type 1 Diabetes. En: Diabetes Care. Vol. 43; No. 4; pp. e47-e49; 0149-5992, 1935-5548; Consultado en: 2020/08/17/14:00:48. Disponible en: https://care.diabetesjournals.org/content/43/4/e47. Disponible en: 10.2337/dc19-2394.
Jeganathan, V. Swetha E.; Wang, Jie Jin; Wong, Tien Yin (2008) Ocular Associations of Diabetes Other Than Diabetic Retinopathy. En: Diabetes Care. Vol. 31; No. 9; pp. 1905-1912; 0149-5992; Consultado en: 2020/08/17/14:39:16. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2518369/. Disponible en: 10.2337/dc08-0342.
Tuft, S. J.; Coster, D. J. (1990) The corneal endothelium. En: Eye. Vol. 4; No. 3; pp. 389-424; 1476-5454; Consultado en: 2020/08/19/23:08:22. Disponible en: https://www.nature.com/articles/eye199053. Disponible en: 10.1038/eye.1990.53.
Cochrane Handbook for Systematic Reviews of Interventions. Consultado en: 2020/09/08/17:55:35. Disponible en: /handbook/current.
Toro, Ligia; Li, Min; Zhang, Zhu; Singh, Harpreet; Wu, Yong; Stefani, Enrico (2014) MaxiK channel and cell signalling. En: Pflugers Archiv : European journal of physiology. Vol. 466; No. 5; pp. 875-886; 0031-6768; Consultado en: 2020/09/18/10:21:15. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3969412/. Disponible en: 10.1007/s00424-013-1359-0.
Yagi-Yaguchi, Yukari; Yamaguchi, Takefumi; Higa, Kazunari; Suzuki, Terumasa; Aketa, Naohiko; Dogru, Murat; Satake, Yoshiyuki; Shimazaki, Jun (2017) Association between corneal endothelial cell densities and elevated cytokine levels in the aqueous humor. En: Scientific Reports. Vol. 7; No. 1; pp. 13603 2045-2322; Consultado en: 2020/09/18/10:44:14. Disponible en: https://www.nature.com/articles/s41598-017-14131-3. Disponible en: 10.1038/s41598-017-14131-3.
Yagi-Yaguchi, Yukari; Yamaguchi, Takefumi; Higa, Kazunari; Suzuki, Terumasa; Aketa, Naohiko; Dogru, Murat; Satake, Yoshiyuki; Shimazaki, Jun (2017) Association between corneal endothelial cell densities and elevated cytokine levels in the aqueous humor. En: Scientific Reports. Vol. 7; No. 1; pp. 13603 2045-2322; Consultado en: 2020/09/18/10:46:25. Disponible en: https://www.nature.com/articles/s41598-017-14131-3. Disponible en: 10.1038/s41598-017-14131-3.
Lass, Jonathan H.; Beck, Roy W.; Benetz, Beth Ann; Dontchev, Mariya; Gal, Robin L.; Holland, Edward J.; Kollman, Craig; Mannis, Mark J.; Price, Francis; Raber, Irving; Stark, Walter; Stulting, R. Doyle; Sugar, Alan; Group, for the Cornea Donor Study Investigator (2011) Baseline Factors Related to Endothelial Cell Loss Following Penetrating Keratoplasty. En: Archives of Ophthalmology. Vol. 129; No. 9; pp. 1149-1154; 0003-9950; Consultado en: 2020/09/18/10:52:03. Disponible en: https://jamanetwork.com/journals/jamaophthalmology/fullarticle/1106439. Disponible en: 10.1001/archophthalmol.2011.102.
Feizi, Sepehr (2018) Corneal endothelial cell dysfunction: etiologies and management. En: Therapeutic Advances in Ophthalmology. Vol. 10; 2515-8414; Consultado en: 2020/09/18/12:54:13. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6293368/. Disponible en: 10.1177/2515841418815802.
Singh, Harpreet; Stefani, Enrico; Toro, Ligia (2012) Intracellular BKCa (iBKCa) channels. En: The Journal of Physiology. Vol. 590; No. 23; pp. 5937-5947; 1469-7793; Consultado en: 2020/09/18/23:30:55. Disponible en: https://physoc.onlinelibrary.wiley.com/doi/abs/10.1113/jphysiol.2011.215533. Disponible en: 10.1113/jphysiol.2011.215533.
Yan, Jiusheng; Aldrich, Richard W. (2012) BK potassium channel modulation by leucine-rich repeat-containing proteins. En: Proceedings of the National Academy of Sciences. Vol. 109; No. 20; pp. 7917-7922; 0027-8424, 1091-6490; Consultado en: 2020/10/29/17:29:52. Disponible en: https://www.pnas.org/content/109/20/7917. Disponible en: 10.1073/pnas.1205435109.
Skyler, Jay S.; Bakris, George L.; Bonifacio, Ezio; Darsow, Tamara; Eckel, Robert H.; Groop, Leif; Groop, Per-Henrik; Handelsman, Yehuda; Insel, Richard A.; Mathieu, Chantal; McElvaine, Allison T.; Palmer, Jerry P.; Pugliese, Alberto; Schatz, Desmond A.; Sosenko, Jay M.; Wilding, John P. H.; Ratner, Robert E. (2017) Differentiation of Diabetes by Pathophysiology, Natural History, and Prognosis. En: Diabetes. Vol. 66; No. 2; pp. 241-255; 0012-1797, 1939-327X; Consultado en: 2020/12/06/16:44:25. Disponible en: https://diabetes.diabetesjournals.org/content/66/2/241. Disponible en: 10.2337/db16-0806.
Hatou, Shin; Yamada, Masakazu; Akune, Yoko; Mochizuki, Hiroshi; Shiraishi, Atsushi; Joko, Takeshi; Nishida, Teruo; Tsubota, Kazuo (2010) Role of Insulin in Regulation of Na+-/K+-Dependent ATPase Activity and Pump Function in Corneal Endothelial Cells. En: Investigative Ophthalmology & Visual Science. Vol. 51; No. 8; pp. 3935-3942; 1552-5783; Consultado en: 2020/12/06/23:52:28. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2126373. Disponible en: 10.1167/iovs.09-4027.
Cernea, Simona; Dobreanu, Minodora (2013) Diabetes and beta cell function: from mechanisms to evaluation and clinical implications. En: Biochemia Medica. Vol. 23; No. 3; pp. 266-280; 1330-0962; Disponible en: 10.11613/bm.2013.033.
McCarey, Bernard E.; Edelhauser, Henry F.; Lynn, Michael J. (2008) Review of Corneal Endothelial Specular Microscopy for FDA Clinical Trials of Refractive Procedures, Surgical Devices and New Intraocular Drugs and Solutions. En: Cornea. Vol. 27; No. 1; pp. 1-16; 0277-3740; Consultado en: 2020/12/11/01:30:12. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3062434/. Disponible en: 10.1097/ICO.0b013e31815892da.
Van den Bogerd, Bert; Dhubhghaill, Sorcha Ní; Koppen, Carina; Tassignon, Marie-José; Zakaria, Nadia (2018) A review of the evidence for in vivo corneal endothelial regeneration. En: Survey of Ophthalmology. Vol. 63; No. 2; pp. 149-165; 0039-6257; Consultado en: 2020/12/14/16:17:25. Disponible en: http://www.sciencedirect.com/science/article/pii/S0039625717301054. Disponible en: 10.1016/j.survophthal.2017.07.004.
Powers, Alvin C.; Niswender, Kevin D.; Evans-Molina, Carmella; Jameson, J. Larry; Fauci, Anthony S.; Kasper, Dennis L.; Hauser, Stephen L.; Longo, Dan L.; Loscalzo, Joseph (2018) Diabetes Mellitus: Diagnosis, Classification, and Pathophysiology. En: Harrison's Principles of Internal Medicine. New York, NY: McGraw-Hill Education; Consultado en: 2020/12/14/17:13:54. Disponible en: accessmedicine.mhmedical.com/content.aspx?aid=1156520865.
Roszkowska, A. M.; Tringali, C. G.; Colosi, P.; Squeri, C. A.; Ferreri, G. (1999) Corneal endothelium evaluation in type I and type II diabetes mellitus. En: Ophthalmologica. Journal International D'ophtalmologie. International Journal of Ophthalmology. Zeitschrift Fur Augenheilkunde. Vol. 213; No. 4; pp. 258-261; 0030-3755; Disponible en: 10.1159/000027431.
Goldstein, Andrew S.; Janson, Ben J.; Skeie, Jessica M.; Ling, Jennifer J.; Greiner, Mark A. (2020) The effects of diabetes mellitus on the corneal endothelium: A review. En: Survey of Ophthalmology. Vol. 65; No. 4; pp. 438-450; 1879-3304; Disponible en: 10.1016/j.survophthal.2019.12.009.
Lin, Hung-Yu; Weng, Shao-Wen; Chang, Yen-Hsiang; Su, Yu-Jih; Chang, Chih-Min; Tsai, Chia-Jen; Shen, Feng-Chih; Chuang, Jiin-Haur; Lin, Tsu-Kung; Liou, Chia-Wei; Lin, Ching-Yi; Wang, Pei-Wen (2018) The Causal Role of Mitochondrial Dynamics in Regulating Insulin Resistance in Diabetes: Link through Mitochondrial Reactive Oxygen Species. En: Oxidative Medicine and Cellular Longevity. Consultado en: 2020/12/16/00:07:04. Disponible en: https://www.hindawi.com/journals/omcl/2018/7514383/.
Ottawa Hospital Research Institute. Consultado en: 2021/01/28/13:37:00. Disponible en: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp.
American Diabetes Association (2020) Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes—2020. En: Diabetes Care. Vol. 43; No. Supplement 1; pp. S98-S110; 0149-5992, 1935-5548; Consultado en: 2021/02/10/18:34:20. Disponible en: https://care.diabetesjournals.org/content/43/Supplement_1/S98. Disponible en: 10.2337/dc20-S009.
Roo, An-Katrien De; Wouters, Jasper; Govaere, Olivier; Foets, Beatrijs; Oord, Joost J. van den (2017) Identification of Circulating Fibrocytes and Dendritic Derivatives in Corneal Endothelium of Patients With Fuchs' Dystrophy. En: Investigative Ophthalmology & Visual Science. Vol. 58; No. 1; pp. 670-681; 1552-5783; Consultado en: 2021/02/12/16:01:13. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2600835. Disponible en: 10.1167/iovs.16-20880.
Anbar, Mohamed; Ammar, Hatem; Mahmoud, Ramadan A. (2016) Corneal Endothelial Morphology in Children with Type 1 Diabetes. En: Journal of Diabetes Research. Vol. 2016; 2314-6745; Consultado en: 2021/02/17/19:59:19. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4939174/. Disponible en: 10.1155/2016/7319047.
Calvo-Maroto, Ana M.; Cerviño, Alejandro; Perez-Cambrodí, Rafael J.; García-Lázaro, Santiago; Sanchis-Gimeno, Juan A. (2015) Quantitative corneal anatomy: evaluation of the effect of diabetes duration on the endothelial cell density and corneal thickness. En: Ophthalmic and Physiological Optics. Vol. 35; No. 3; pp. 293-298; 1475-1313; Consultado en: 2021/02/17/21:06:50. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1111/opo.12191. Disponible en: https://doi.org/10.1111/opo.12191.
Cankurtaran, Veysel; Tekin, Kemal (2019) Cumulative Effects of Smoking and Diabetes Mellitus on Corneal Endothelial Cell Parameters. En: Cornea. Vol. 38; No. 1; pp. 78-83; 1536-4798; Disponible en: 10.1097/ICO.0000000000001718.
Changes in Choroidal Thickness and Corneal Parameters in Diabetic Eyes. Consultado en: 2021/02/17/21:47:35. Disponible en: https://journals.sagepub.com/doi/abs/10.5301/ejo.5000677.
Baker, Peter; Fain, Pam; Kahles, Heinrich; Yu, Liping; Hutton, John; Wenzlau, Janet; Rewers, Marian; Badenhoop, Klaus; Eisenbarth, George (2012) Genetic Determinants of 21-Hydroxylase Autoantibodies Amongst Patients of the Type 1 Diabetes Genetics Consortium. En: The Journal of Clinical Endocrinology & Metabolism. Vol. 97; No. 8; pp. E1573-E1578; 0021-972X; Consultado en: 2021/02/19/15:37:51. Disponible en: https://doi.org/10.1210/jc.2011-2824. Disponible en: 10.1210/jc.2011-2824.
Morran, Michael P.; Vonberg, Andrew; Khadra, Anmar; Pietropaolo, Massimo (2015) Immunogenetics of Type 1 Diabetes Mellitus. En: Molecular aspects of medicine. Vol. 42; pp. 42-60; 0098-2997; Consultado en: 2021/02/19/18:08:27. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4548800/. Disponible en: 10.1016/j.mam.2014.12.004.
Iwata, M.; Kiritoshi, A.; Roat, M. I.; Yagihashi, A.; Thoft, R. A. (1992) Regulation of HLA class II antigen expression on cultured corneal epithelium by interferon-gamma. En: Investigative Ophthalmology & Visual Science. Vol. 33; No. 9; pp. 2714-2721; 0146-0404
Donnelly, J. J.; Li, W. Y.; Rockey, J. H.; Prendergast, R. A. (1985) Induction of class II (Ia) alloantigen expression on corneal endothelium in vivo and in vitro. En: Investigative Ophthalmology & Visual Science. Vol. 26; No. 4; pp. 575-580; 1552-5783; Consultado en: 2021/02/19/21:13:20. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2177064.
Young, E.; Stark, W. J.; Prendergast, R. A. (1985) Immunology of corneal allograft rejection: HLA-DR antigens on human corneal cells. En: Investigative Ophthalmology & Visual Science. Vol. 26; No. 4; pp. 571-574; 1552-5783; Consultado en: 2021/02/19/21:19:07. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2177105.
Zhang, Jie; McGhee, Charles N. J.; Patel, Dipika V. (2019) The Molecular Basis of Fuchs’ Endothelial Corneal Dystrophy. En: Molecular Diagnosis & Therapy. Vol. 23; No. 1; pp. 97-112; 1179-2000; Consultado en: 2021/02/19/21:22:54. Disponible en: https://doi.org/10.1007/s40291-018-0379-z. Disponible en: 10.1007/s40291-018-0379-z.
Treseler, P. A.; Foulks, G. N.; Sanfilippo, F. (1984) The expression of HLA antigens by cells in the human cornea. En: American Journal of Ophthalmology. Vol. 98; No. 6; pp. 763-772; 0002-9394; Disponible en: 10.1016/0002-9394(84)90696-2.
Crotti, Chiara; Selmi, Carlo; Shoenfeld, Yehuda; Meroni, Pier Luigi; Gershwin, M. Eric (2014) Chapter 46. En: Autoantibodies (Third Edition). pp. 385-389; San Diego: Elsevier; 978-0-444-56378-1; Consultado en: 2021/02/19/22:57:55. Disponible en: https://www.sciencedirect.com/science/article/pii/B9780444563781000460.
Lahdou, Imad; Engler, Christoph; Mehrle, Stefan; Daniel, Volker; Sadeghi, Mahmoud; Opelz, Gerhard; Terness, Peter (2014) Role of Human Corneal Endothelial Cells in T-Cell–Mediated Alloimmune Attack In Vitro. En: Investigative Ophthalmology & Visual Science. Vol. 55; No. 3; pp. 1213-1221; 1552-5783; Consultado en: 2021/02/20/01:15:36. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2189465. Disponible en: 10.1167/iovs.13-11930.
Whikehart (1995) The inhibition of sodium, potassium-stimulated ATPase and corneal swelling: the role played by polyols. En: Journal of the American Optometric Association. Vol. 66; No. 6; pp. 331-333; 0003-0244; Consultado en: 2021/02/20/02:01:22. Disponible en: https://europepmc.org/article/med/7673590.
Busted, N; Olsen, T; Schmitz, O (1981) Clinical observations on the corneal thickness and the corneal endothelium in diabetes mellitus. En: The British Journal of Ophthalmology. Vol. 65; No. 10; pp. 687-690; 0007-1161; Consultado en: 2021/02/20/02:10:18. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1039638/.
Zhang, Kaikai; Zhao, Liangliang; Zhu, Chao; Nan, Weijin; Ding, Xinfen; Dong, Yuchen; Zhao, Meisheng (2021) The effect of diabetes on corneal endothelium: a meta-analysis. En: BMC Ophthalmology. Vol. 21; No. 1; pp. 78 1471-2415; Consultado en: 2021/02/20/02:31:55. Disponible en: https://doi.org/10.1186/s12886-020-01785-3. Disponible en: 10.1186/s12886-020-01785-3.
Differences in corneal thickness and corneal endothelium related to duration in Diabetes | Eye. Consultado en: 2021/02/27/23:25:31. Disponible en: https://www.nature.com/articles/6701868.
Lee, J. S.; Oum, B. S.; Choi, H. Y.; Lee, J. E.; Cho, B. M. (2006) Differences in corneal thickness and corneal endothelium related to duration in diabetes. En: Eye (London, England). Vol. 20; No. 3; pp. 315-318; 0950-222X; Disponible en: 10.1038/sj.eye.6701868.
Tk, Yoo; E, Oh (2019) Diabetes mellitus is associated with dry eye syndrome: a meta-analysis. En: International Ophthalmology. Vol. 39; No. 11; pp. 2611-2620; 0165-5701, 1573-2630; Consultado en: 2021/03/01/19:32:48. Disponible en: https://europepmc.org/article/med/31065905. Disponible en: 10.1007/s10792-019-01110-y.
Stuard, Whitney L.; Titone, Rossella; Robertson, Danielle M. (2017) Tear Levels of Insulin-Like Growth Factor Binding Protein 3 Correlate With Subbasal Nerve Plexus Changes in Patients With Type 2 Diabetes Mellitus. En: Investigative Ophthalmology & Visual Science. Vol. 58; No. 14; pp. 6105-6112; 1552-5783; Consultado en: 2021/03/01/19:40:54. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2665837. Disponible en: 10.1167/iovs.17-22425.
Wu, Yu-Chieh; Buckner, Benjamin R.; Zhu, Meifang; Cavanagh, H. Dwight; Robertson, Danielle M. (2012) Elevated IGFBP3 levels in diabetic tears: a negative regulator of IGF-1 signaling in the corneal epithelium. En: The Ocular Surface. Vol. 10; No. 2; pp. 100-107; 1542-0124; Disponible en: 10.1016/j.jtos.2012.01.004.
Vujosevic, Stela; Muraca, Andrea; Alkabes, Micol; Villani, Edoardo; Cavarzeran, Fabiano; Rossetti, Luca; De Cillaʼ, Stefano (2019) Early microvascular and neural changes in patients with type 1 and type 2 diabetes mellitus without clinical signs of diabetic retinopathy. En: Retina (Philadelphia, Pa.). Vol. 39; No. 3; pp. 435-445; 1539-2864; Disponible en: 10.1097/IAE.0000000000001990.
Stem, Maxwell S.; Hussain, Munira; Lentz, Stephen I.; Raval, Nilesh; Gardner, Thomas W.; Pop-Busui, Rodica; Shtein, Roni M. (2014) Differential reduction in corneal nerve fiber length in patients with type 1 or type 2 diabetes mellitus. En: Journal of diabetes and its complications. Vol. 28; No. 5; pp. 658-661; 1056-8727; Consultado en: 2021/03/02/01:40:05. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4146399/. Disponible en: 10.1016/j.jdiacomp.2014.06.007.
Tang, Yizhen; Chen, Xinyi; Zhang, Xiaobo; Tang, Qiaomei; Liu, Siyu; Yao, Ke (2017) Clinical evaluation of corneal changes after phacoemulsification in diabetic and non-diabetic cataract patients, a systematic review and meta-analysis. En: Scientific Reports. Vol. 7; 2045-2322; Consultado en: 2021/03/05/11:34:31. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5658349/. Disponible en: 10.1038/s41598-017-14656-7.
Fong, Donald S.; Aiello, Lloyd; Gardner, Thomas W.; King, George L.; Blankenship, George; Cavallerano, Jerry D.; Ferris, Fredrick L.; Klein, Ronald (2004) Retinopathy in Diabetes. En: Diabetes Care. Vol. 27; No. suppl 1; pp. s84-s87; 0149-5992, 1935-5548; Consultado en: 2021/03/05/13:54:59. Disponible en: https://care.diabetesjournals.org/content/27/suppl_1/s84. Disponible en: 10.2337/diacare.27.2007.S84.
Costantini, E.; Touzeau, O.; Gaujoux, T.; Basli, E.; Kopito, R.; Borderie, V. M.; Laroche, L. (2009) Age-Related Changes in Central and Peripheral Corneal Thickness. En: Investigative Ophthalmology & Visual Science. Vol. 50; No. 13; pp. 5107-5107; 1552-5783; Consultado en: 2021/03/05/22:41:18. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2367476.
Abib, F. C.; Barreto Junior, J. (2001) Behavior of corneal endothelial density over a lifetime. En: Journal of Cataract and Refractive Surgery. Vol. 27; No. 10; pp. 1574-1578; 0886-3350; Disponible en: 10.1016/s0886-3350(01)00925-7.
Islam, Qamar Ul; Saeed, Muhammad Kamran; Mehboob, Mohammad Asim (2017) Age related changes in corneal morphological characteristics of healthy Pakistani eyes. En: Saudi Journal of Ophthalmology. Vol. 31; No. 2; pp. 86-90; 1319-4534; Consultado en: 2021/03/06/13:03:47. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5436377/. Disponible en: 10.1016/j.sjopt.2017.02.009.
Zhao, Di; Cho, Juhee; Kim, Myung Hun; Friedman, David S.; Guallar, Eliseo (2015) Diabetes, Fasting Glucose, and the Risk of Glaucoma: A Meta-analysis. En: Ophthalmology. Vol. 122; No. 1; pp. 72-78; 0161-6420, 1549-4713; Consultado en: 2021/03/12/09:06:51. Disponible en: https://www.aaojournal.org/article/S0161-6420(14)00697-6/abstract. Disponible en: 10.1016/j.ophtha.2014.07.051.
Doughty, M. J.; Zaman, M. L. (2000) Human corneal thickness and its impact on intraocular pressure measures: a review and meta-analysis approach. En: Survey of Ophthalmology. Vol. 44; No. 5; pp. 367-408; 0039-6257; Disponible en: 10.1016/s0039-6257(00)00110-7.
Margo, Jordan A.; Whiting, Martha F.; Brown, Clayton H.; Hoover, Caroline K.; Munir, Wuqaas M. (2017) The Effect of Chronic Pulmonary Disease and Mechanical Ventilation on Corneal Donor Endothelial Cell Density and Transplant Suitability. En: American Journal of Ophthalmology. Vol. 183; pp. 65-70; 0002-9394; Consultado en: 2021/03/15/16:23:06. Disponible en: https://www.sciencedirect.com/science/article/pii/S000293941730377X. Disponible en: 10.1016/j.ajo.2017.08.023.
Magdum, Renu M.; Mutha, Neha; Maheshgauri, Rupali (2013) A study of corneal endothelial changes in soft contact lens wearers using non-contact specular microscopy. En: Medical Journal of Dr. D.Y. Patil University. Vol. 6; No. 3; pp. 245 0975-2870; Consultado en: 2021/03/15/16:59:08. Disponible en: https://www.mjdrdypu.org/article.asp?issn=0975-2870;year=2013;volume=6;issue=3;spage=245;epage=249;aulast=Magdum;type=0. Disponible en: 10.4103/0975-2870.114645.
Corneal endothelial cell density in glaucoma. Consultado en: 2021/03/15/17:14:55. Disponible en: https://europepmc.org/article/med/9143804.
Kheirkhah, Ahmad; Saboo, Ujwala S.; Abud, Tulio B.; Dohlman, Thomas H.; Arnoldner, Michael A.; Hamrah, Pedram; Dana, Reza (2015) Reduced Corneal Endothelial Cell Density in Patients with Dry Eye Disease. En: American journal of ophthalmology. Vol. 159; No. 6; pp. 1022 Consultado en: 2021/03/15/18:12:02. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4427236/. Disponible en: 10.1016/j.ajo.2015.03.011.
Konstantopoulos, Spyros (2011) Fixed effects and variance components estimation in three-level meta-analysis. En: Research Synthesis Methods. Vol. 2; No. 1; pp. 61-76; 1759-2879; Disponible en: 10.1002/jrsm.35.
Viechtbauer, Wolfgang (2010) Conducting Meta-Analyses in R with the metafor Package. En: Journal of Statistical Software. Vol. 36; No. 1; pp. 1-48; 1548-7660; Consultado en: 2021/03/26/22:53:47. Disponible en: https://www.jstatsoft.org/index.php/jss/article/view/v036i03. Disponible en: 10.18637/jss.v036.i03.
R Core Team (2020); R: A language and environment for statistical computing. R Foundation for Statistical Computing. Consultado en: 2021/03/26/23:08:22. Disponible en: https://www.eea.europa.eu/data-and-maps/indicators/oxygen-consuming-substances-in-rivers/r-development-core-team-2006.
Kudva, Ajay A.; Lasrado, Adeline S.; Hegde, Sudhir; Kadri, Rajani; Devika, P.; Shetty, Akansha (2020) Corneal endothelial cell changes in diabetics versus age group matched nondiabetics after manual small incision cataract surgery. En: Indian Journal of Ophthalmology. Vol. 68; No. 1; pp. 72 0301-4738; Consultado en: 2021/03/29/10:13:00. Disponible en: https://www.ijo.in/article.asp?issn=0301-4738;year=2020;volume=68;issue=1;spage=72;epage=76;aulast=Kudva;type=0. Disponible en: 10.4103/ijo.IJO_406_19.
Gambato, Catia; Longhin, Evelyn; Catania, Anton Giulio; Lazzarini, Daniela; Parrozzani, Raffaele; Midena, Edoardo (2015) Aging and corneal layers: an in vivo corneal confocal microscopy study. En: Graefe's Archive for Clinical and Experimental Ophthalmology. Vol. 253; No. 2; pp. 267-275; 1435-702X; Consultado en: 2021/04/03/12:31:21. Disponible en: https://doi.org/10.1007/s00417-014-2812-2. Disponible en: 10.1007/s00417-014-2812-2.
Niederer, R. L.; Perumal, D.; Sherwin, T.; McGhee, C. N. J. (2007) Age-related differences in the normal human cornea: a laser scanning in vivo confocal microscopy study. En: The British Journal of Ophthalmology. Vol. 91; No. 9; pp. 1165-1169; 0007-1161; Disponible en: 10.1136/bjo.2006.112656.
Vassilev, Vassil S.; Mandai, Michiko; Yonemura, Shigenobu; Takeichi, Masatoshi (2012) Loss of N-Cadherin from the Endothelium Causes Stromal Edema and Epithelial Dysgenesis in the Mouse Cornea. En: Investigative Ophthalmology & Visual Science. Vol. 53; No. 11; pp. 7183-7193; 1552-5783; Consultado en: 2021/04/03/17:34:44. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2127685. Disponible en: 10.1167/iovs.12-9949.
Wang, Yan; Zhang, Hong-Tao; Su, Xing-Li; Deng, Xiu-Ling; Yuan, Bing-Xiang; Zhang, Wei; Wang, Xin-Feng; Yang, Yu-Bai (2010) Experimental diabetes mellitus down-regulates large-conductance Ca2+-activated K+ channels in cerebral artery smooth muscle and alters functional conductance. En: Current Neurovascular Research. Vol. 7; No. 2; pp. 75-84; 1875-5739; Disponible en: 10.2174/156720210791184925.
Guéguinou, Maxime; Chantôme, Aurélie; Fromont, Gaëlle; Bougnoux, Philippe; Vandier, Christophe; Potier-Cartereau, Marie (2014) KCa and Ca2+ channels: The complex thought. En: Biochimica et Biophysica Acta (BBA). Calcium Signaling in Health and Disease; Vol. 1843; No. 10; pp. 2322-2333; 0167-4889; Consultado en: 2021/04/05/10:39:10. Disponible en: https://www.sciencedirect.com/science/article/pii/S0167488914000834. Disponible en: 10.1016/j.bbamcr.2014.02.019.
Hage, Travis A.; Salkoff, Lawrence (2012) Sodium-Activated Potassium Channels Are Functionally Coupled to Persistent Sodium Currents. En: The Journal of Neuroscience. Vol. 32; No. 8; pp. 2714-2721; 0270-6474; Consultado en: 2021/04/05/14:03:58. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3319674/. Disponible en: 10.1523/JNEUROSCI.5088-11.2012.
Yi, Fu; Ling, Tian-You; Lu, Tong; Wang, Xiao-Li; Li, Jingchao; Claycomb, William C.; Shen, Win-Kuang; Lee, Hon-Chi (2015) Down-regulation of the Small Conductance Calcium-activated Potassium Channels in Diabetic Mouse Atria*. En: Journal of Biological Chemistry. Vol. 290; No. 11; pp. 7016-7026; 0021-9258; Consultado en: 2021/04/05/20:57:36. Disponible en: https://www.sciencedirect.com/science/article/pii/S0021925820767797. Disponible en: 10.1074/jbc.M114.607952.
Zhao, Li-Mei; Wang, Yan; Ma, Xiao-Zhen; Wang, Nan-Ping; Deng, Xiu-Ling (2014) Advanced glycation end products impair K(Ca)3.1-and K(Ca)2.3-mediated vasodilatation via oxidative stress in rat mesenteric arteries. En: Pflugers Archiv: European Journal of Physiology. Vol. 466; No. 2; pp. 307-317; 1432-2013; Disponible en: 10.1007/s00424-013-1324-y.
Gagnon, M. M.; Boisjoly, H. M.; Brunette, I.; Charest, M.; Amyot, M. (1997) Corneal endothelial cell density in glaucoma. En: Cornea. Vol. 16; No. 3; pp. 314-318; 0277-3740
Tarazona, Sonia; Furió-Tarí, Pedro; Turrà, David; Pietro, Antonio Di; Nueda, María José; Ferrer, Alberto; Conesa, Ana (2015) Data quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package. En: Nucleic Acids Research. Vol. 43; No. 21; pp. e140-e140; 0305-1048; Consultado en: 2021/04/24/22:38:09. Disponible en: https://doi.org/10.1093/nar/gkv711. Disponible en: 10.1093/nar/gkv711.
DAVID Functional Annotation Bioinformatics Microarray Analysis. Consultado en: 2021/04/24/23:07:31. Disponible en: https://david.ncifcrf.gov/.
Yu, Tao; Deng, Chunyu; Wu, Ruobin; Guo, Huiming; Zheng, Shaoyi; Yu, Xiyong; Shan, Zhixin; Kuang, Sujuan; Lin, Qiuxiong (2012) Decreased expression of small-conductance Ca2+-activated K+ channels SK1 and SK2 in human chronic atrial fibrillation. En: Life Sciences. Vol. 90; No. 5; pp. 219-227; 0024-3205; Consultado en: 2021/04/25/00:22:49. Disponible en: https://www.sciencedirect.com/science/article/pii/S0024320511005704. Disponible en: 10.1016/j.lfs.2011.11.008.
Bonito, B.; Sauter, D. R. P.; Schwab, A.; Djamgoz, M. B. A.; Novak, I. (2016) KCa3.1 (IK) modulates pancreatic cancer cell migration, invasion and proliferation: anomalous effects on TRAM-34. En: Pflügers Archiv. Vol. 468; No. 11; pp. 1865-1875; 1432-2013; Consultado en: 2021/04/25/01:36:47. Disponible en: https://doi.org/10.1007/s00424-016-1891-9. Disponible en: 10.1007/s00424-016-1891-9.
Kopec, Ashley M.; Rivera, Phillip D.; Lacagnina, Michael J.; Hanamsagar, Richa; Bilbo, Staci D. (2017) Optimized solubilization of TRIzol-precipitated protein permits Western blotting analysis to maximize data available from brain tissue. En: Journal of Neuroscience Methods. Vol. 280; pp. 64-76; 0165-0270; Consultado en: 2021/04/25/02:12:42. Disponible en: https://www.sciencedirect.com/science/article/pii/S0165027017300389. Disponible en: 10.1016/j.jneumeth.2017.02.002.
Ion Transport Function of SLC4A11 in Corneal Endothelium | IOVS | ARVO Journals. Consultado en: 2021/05/09/22:00:06. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2189793.
Jalimarada, Supriya S.; Ogando, Diego G.; Vithana, Eranga N.; Bonanno, Joseph A. (2013) Ion Transport Function of SLC4A11 in Corneal Endothelium. En: Investigative Ophthalmology & Visual Science. Vol. 54; No. 6; pp. 4330-4340; 1552-5783; Consultado en: 2021/05/09/22:00:32. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2189793. Disponible en: 10.1167/iovs.13-11929.
Pedarzani, P.; Stocker, M. (2008) Molecular and cellular basis of small--and intermediate-conductance, calcium-activated potassium channel function in the brain. En: Cellular and molecular life sciences: CMLS. Vol. 65; No. 20; pp. 3196-3217; 1420-682X; Disponible en: 10.1007/s00018-008-8216-x.
SK2 and SK3 Expression Differentially Affect Firing Frequency and Precision in Dopamine Neurons. Consultado en: 2021/05/09/22:12:02. Disponible en: https://www-ncbi-nlm-nih-gov.ez.urosario.edu.co/pmc/articles/PMC3383402/.
Deignan, Jason; Luján, Rafael; Bond, Chris; Riegel, Arthur; Watanabe, Masahiko; Williams, John T.; Maylie, James; Adelman, John P. (2012) SK2 and SK3 Expression Differentially Affect Firing Frequency and Precision in Dopamine Neurons. En: Neuroscience. Vol. 217; pp. 67-76; 0306-4522; Consultado en: 2021/05/09/22:12:04. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3383402/. Disponible en: 10.1016/j.neuroscience.2012.04.053.
Gu, Mingxia; Zhu, Yanrong; Yin, Xiaorong; Zhang, Dai-Min (2018) Small-conductance Ca 2+-activated K + channels: insights into their roles in cardiovascular disease. En: Experimental & Molecular Medicine. Vol. 50; No. 4; pp. 1-7; 2092-6413; Consultado en: 2021/05/09/22:24:50. Disponible en: https://www.nature.com/articles/s12276-018-0043-z. Disponible en: 10.1038/s12276-018-0043-z.
Lu, Ling; Timofeyev, Valeriy; Li, Ning; Rafizadeh, Sassan; Singapuri, Anil; Harris, Todd R.; Chiamvimonvat, Nipavan (2009) α-Actinin2 cytoskeletal protein is required for the functional membrane localization of a Ca2+-activated K+ channel (SK2 channel). En: Proceedings of the National Academy of Sciences of the United States of America. Vol. 106; No. 43; pp. 18402-18407; 0027-8424; Consultado en: 2021/05/09/22:46:35. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2775294/. Disponible en: 10.1073/pnas.0908207106.
Kim, Tae Yun; Terentyeva, Radmila; Roder, Karim H. F.; Li, Weiyan; Liu, Man; Greener, Ian; Hamilton, Shanna; Polina, Iuliia; Murphy, Kevin R.; Clements, Richard T.; Dudley, Samuel C.; Koren, Gideon; Choi, Bum-Rak; Terentyev, Dmitry (2017) SK channel enhancers attenuate Ca2+-dependent arrhythmia in hypertrophic hearts by regulating mito-ROS-dependent oxidation and activity of RyR. En: Cardiovascular Research. Vol. 113; No. 3; pp. 343-353; 0008-6363; Consultado en: 2021/05/09/22:48:47. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5852621/. Disponible en: 10.1093/cvr/cvx005.
Takai, Jun; Santu, Alexandra; Zheng, Haifeng; Koh, Sang Don; Ohta, Masanori; Filimban, Linda M.; Lemaître, Vincent; Teraoka, Ryutaro; Jo, Hanjoong; Miura, Hiroto (2013) Laminar shear stress upregulates endothelial Ca2+-activated K+ channels KCa2.3 and KCa3.1 via a Ca2+/calmodulin-dependent protein kinase kinase/Akt/p300 cascade. En: American Journal of Physiology-Heart and Circulatory Physiology. Vol. 305; No. 4; pp. H484-H493; 0363-6135; Consultado en: 2021/05/09/23:17:04. Disponible en: https://journals.physiology.org/doi/full/10.1152/ajpheart.00642.2012. Disponible en: 10.1152/ajpheart.00642.2012.
Ca2+-activated K+ channels in human melanoma cells are up-regulated by hypoxia involving hypoxia-inducible factor-1α and the von Hippel-Lindau protein. Consultado en: 2021/05/09/23:19:41. Disponible en: https://physoc.onlinelibrary.wiley.com/doi/full/10.1113/jphysiol.2005.096818.
D’Arcangelo, Daniela; Scatozza, Francesca; Giampietri, Claudia; Marchetti, Paolo; Facchiano, Francesco; Facchiano, Antonio (2019) Ion Channel Expression in Human Melanoma Samples: In Silico Identification and Experimental Validation of Molecular Targets. En: Cancers. Vol. 11; No. 4; pp. 446 Consultado en: 2021/05/09/23:21:47. Disponible en: https://www.mdpi.com/2072-6694/11/4/446. Disponible en: 10.3390/cancers11040446.
Feranchak, Andrew P.; Doctor, R. Brian; Troetsch, Marlyn; Brookman, Kathryn; Johnson, Sylene M.; Fitz, J. Gregory (2004) Calcium-dependent regulation of secretion in biliary epithelial cells: the role of apamin-sensitive SK channels. En: Gastroenterology. Vol. 127; No. 3; pp. 903-913; 0016-5085; Disponible en: 10.1053/j.gastro.2004.06.047.
Chantome, Aurelie; Girault, Alban; Potier, Marie; Collin, Christine; Vaudin, Pascal; Pagès, Jean-Christophe; Vandier, Christophe; Joulin, Virginie (2009) KCa2.3 channel-dependent hyperpolarization increases melanoma cell motility. En: Experimental Cell Research. Vol. 315; No. 20; pp. 3620-3630; 1090-2422; Disponible en: 10.1016/j.yexcr.2009.07.021.
Liebau, Stefan; Vaida, Bianca; Proepper, Christian; Grissmer, Stephan; Storch, Alexander; Boeckers, Tobias M.; Dietl, Paul; Wittekindt, Oliver H. (2007) Formation of cellular projections in neural progenitor cells depends on SK3 channel activity. En: Journal of Neurochemistry. Vol. 101; No. 5; pp. 1338-1350; 1471-4159; Consultado en: 2021/05/09/23:30:50. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1471-4159.2006.04437.x. Disponible en: https://doi.org/10.1111/j.1471-4159.2006.04437.x.
Potier, Marie; Tran, Truong An; Chantome, Aurelie; Girault, Alban; Joulin, Virginie; Bougnoux, Philippe; Vandier, Christophe; Pierre, Fabrice (2010) Altered SK3/KCa2.3-mediated migration in adenomatous polyposis coli (Apc) mutated mouse colon epithelial cells. En: Biochemical and Biophysical Research Communications. Vol. 397; No. 1; pp. 42-47; 1090-2104; Disponible en: 10.1016/j.bbrc.2010.05.046.
Koegel, Heidi; Kaesler, Susanne; Burgstahler, Ralf; Werner, Sabine; Alzheimer, Christian (2003) Unexpected down-regulation of the hIK1 Ca2+-activated K+ channel by its opener 1-ethyl-2-benzimidazolinone in HaCaT keratinocytes. Inverse effects on cell growth and proliferation. En: The Journal of Biological Chemistry. Vol. 278; No. 5; pp. 3323-3330; 0021-9258; Disponible en: 10.1074/jbc.M208914200.
Kaushal, Vikas; Koeberle, Paulo D.; Wang, Yimin; Schlichter, Lyanne C. (2007) The Ca2+-activated K+ channel KCNN4/KCa3.1 contributes to microglia activation and nitric oxide-dependent neurodegeneration. En: The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. Vol. 27; No. 1; pp. 234-244; 1529-2401; Disponible en: 10.1523/JNEUROSCI.3593-06.2007.
Lauf, Peter K.; Misri, Sandeep; Chimote, Ameet A.; Adragna, Norma C. (2008) Apparent intermediate K conductance channel hyposmotic activation in human lens epithelial cells. En: American Journal of Physiology-Cell Physiology. Vol. 294; No. 3; pp. C820-C832; 0363-6143; Consultado en: 2021/05/09/23:45:14. Disponible en: http://journals.physiology.org/doi/full/10.1152/ajpcell.00375.2007. Disponible en: 10.1152/ajpcell.00375.2007.
Differential role of IK and BK potassium channels as mediators of intrinsic and extrinsic apoptotic cell death. Consultado en: 2021/05/09/23:45:45. Disponible en: https://pubmed-ncbi-nlm-nih-gov.ez.urosario.edu.co/22992678/.
K ca 3.1 Activation Via P2y 2 Purinergic Receptors Promotes Human Ovarian Cancer Cell (Skov-3) Migration. Consultado en: 2021/05/09/23:46:41. Disponible en: https://pubmed-ncbi-nlm-nih-gov.ez.urosario.edu.co/28659615/.
Robles-Martínez, L.; Garay, E.; Martel-Gallegos, M. G.; Cisneros-Mejorado, A.; Pérez-Montiel, D.; Lara, A.; Arellano, R. O. (2017) Kca3.1 Activation Via P2y2 Purinergic Receptors Promotes Human Ovarian Cancer Cell (Skov-3) Migration. En: Scientific Reports. Vol. 7; No. 1; pp. 4340 2045-2322; Disponible en: 10.1038/s41598-017-04292-6.
Sciaccaluga, Miriam; Fioretti, Bernard; Catacuzzeno, Luigi; Pagani, Francesca; Bertollini, Cristina; Rosito, Maria; Catalano, Myriam; D'Alessandro, Giuseppina; Santoro, Antonio; Cantore, Giampaolo; Ragozzino, Davide; Castigli, Emilia; Franciolini, Fabio; Limatola, Cristina (2010) CXCL12-induced glioblastoma cell migration requires intermediate conductance Ca2+-activated K+ channel activity. En: American Journal of Physiology-Cell Physiology. Vol. 299; No. 1; pp. C175-C184; 0363-6143; Consultado en: 2021/05/09/23:52:49. Disponible en: http://journals.physiology.org/doi/full/10.1152/ajpcell.00344.2009. Disponible en: 10.1152/ajpcell.00344.2009.
Romanenko, Victor G; Nakamoto, Tetsuji; Srivastava, Alaka; Begenisich, Ted; Melvin, James E (2007) Regulation of membrane potential and fluid secretion by Ca2+-activated K+ channels in mouse submandibular glands. En: The Journal of Physiology. Vol. 581; No. Pt 2; pp. 801-817; 0022-3751; Consultado en: 2021/05/09/23:53:45. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2075181/. Disponible en: 10.1113/jphysiol.2006.127498.
Steudel, Friederike A.; Mohr, Corinna J.; Stegen, Benjamin; Nguyen, Hoang Y.; Barnert, Andrea; Steinle, Marc; Beer-Hammer, Sandra; Koch, Pierre; Lo, Wing-Yee; Schroth, Werner; Hoppe, Reiner; Brauch, Hiltrud; Ruth, Peter; Huber, Stephan M.; Lukowski, Robert (2017) SK4 channels modulate Ca2+ signalling and cell cycle progression in murine breast cancer. En: Molecular Oncology. Vol. 11; No. 9; pp. 1172-1188; 1878-0261; Disponible en: 10.1002/1878-0261.12087.
Trinh, Nguyen Thu Ngan; Privé, Anik; Maillé, Emilie; Noël, Josette; Brochiero, Emmanuelle (2008) EGF and K+ channel activity control normal and cystic fibrosis bronchial epithelia repair. En: American Journal of Physiology. Lung Cellular and Molecular Physiology. Vol. 295; No. 5; pp. L866-880; 1040-0605; Disponible en: 10.1152/ajplung.90224.2008.
Vigneault, Patrick; Naud, Patrice; Qi, Xiaoyan; Xiao, Jiening; Villeneuve, Louis; Davis, Darryl R.; Nattel, Stanley (2018) Calcium-dependent potassium channels control proliferation of cardiac progenitor cells and bone marrow-derived mesenchymal stem cells. En: The Journal of Physiology. Vol. 596; No. 12; pp. 2359-2379; 1469-7793; Disponible en: 10.1113/JP275388.
McFerrin, Michael B.; Turner, Kathryn L.; Cuddapah, Vishnu Anand; Sontheimer, Harald (2012) Differential role of IK and BK potassium channels as mediators of intrinsic and extrinsic apoptotic cell death. En: American Journal of Physiology. Cell Physiology. Vol. 303; No. 10; pp. C1070-1078; 1522-1563; Disponible en: 10.1152/ajpcell.00040.2012.
Tejada, Maria A.; Hashem, Nadia; Calloe, Kirstine; Klaerke, Dan A. (2017) Heteromeric Slick/Slack K+ channels show graded sensitivity to cell volume changes. En: PloS One. Vol. 12; No. 2; pp. e0169914 1932-6203; Disponible en: 10.1371/journal.pone.0169914.
Tajima, Nobuyoshi; Schönherr, Kristina; Niedling, Susanna; Kaatz, Martin; Kanno, Hiroshi; Schönherr, Roland; Heinemann, Stefan H (2006) Ca2+-activated K+ channels in human melanoma cells are up-regulated by hypoxia involving hypoxia-inducible factor-1α and the von Hippel-Lindau protein. En: The Journal of Physiology. Vol. 571; No. Pt 2; pp. 349-359; 0022-3751; Consultado en: 2021/05/10/00:11:07. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1796787/. Disponible en: 10.1113/jphysiol.2005.096818.
Wang, Jun; Morishima, Shigeru; Okada, Yasunobu (2003) IK channels are involved in the regulatory volume decrease in human epithelial cells. En: American Journal of Physiology-Cell Physiology. Vol. 284; No. 1; pp. C77-C84; 0363-6143; Consultado en: 2021/05/10/01:37:22. Disponible en: http://journals.physiology.org/doi/full/10.1152/ajpcell.00132.2002. Disponible en: 10.1152/ajpcell.00132.2002.
Millership, Joanne E.; Devor, Daniel C.; Hamilton, Kirk L.; Balut, Corina M.; Bruce, Jason I. E.; Fearon, Ian M. (2010) Calcium-activated K+ channels increase cell proliferation independent of K+ conductance. En: American Journal of Physiology-Cell Physiology. Vol. 300; No. 4; pp. C792-C802; 0363-6143; Consultado en: 2021/05/10/01:48:02. Disponible en: https://journals.physiology.org/doi/full/10.1152/ajpcell.00274.2010. Disponible en: 10.1152/ajpcell.00274.2010.
Sundelacruz, Sarah; Levin, Michael; Kaplan, David L. (2009) Role of Membrane Potential in the Regulation of Cell Proliferation and Differentiation. En: Stem Cell Reviews and Reports. Vol. 5; No. 3; pp. 231-246; 1558-6804; Consultado en: 2021/05/10/02:00:14. Disponible en: https://doi.org/10.1007/s12015-009-9080-2. Disponible en: 10.1007/s12015-009-9080-2.
Barrett, K. E.; Keely, S. J. (2000) Chloride secretion by the intestinal epithelium: molecular basis and regulatory aspects. En: Annual Review of Physiology. Vol. 62; pp. 535-572; 0066-4278; Disponible en: 10.1146/annurev.physiol.62.1.535.
Bernard, K.; Bogliolo, S.; Soriani, O.; Ehrenfeld, J. (2003) Modulation of calcium-dependent chloride secretion by basolateral SK4-like channels in a human bronchial cell line. En: The Journal of Membrane Biology. Vol. 196; No. 1; pp. 15-31; 0022-2631; Disponible en: 10.1007/s00232-003-0621-3.
Reid, Brian; Zhao, Min (2014) The Electrical Response to Injury: Molecular Mechanisms and Wound Healing. En: Advances in Wound Care. Vol. 3; No. 2; pp. 184-201; 2162-1918; Disponible en: 10.1089/wound.2013.0442.
Justet, Cristian; Chifflet, Silvia; Hernandez, Julio A. (2019) Calcium Oscillatory Behavior and Its Possible Role during Wound Healing in Bovine Corneal Endothelial Cells in Culture. En: BioMed Research International. Vol. 2019; pp. e8647121 2314-6133; Consultado en: 2021/05/10/09:50:27. Disponible en: https://www.hindawi.com/journals/bmri/2019/8647121/. Disponible en: 10.1155/2019/8647121.
Watsky, M. A. (1995) Nonselective cation channel activation during wound healing in the corneal endothelium. En: The American Journal of Physiology. Vol. 268; No. 5 Pt 1; pp. C1179-1185; 0002-9513; Disponible en: 10.1152/ajpcell.1995.268.5.C1179.
Vieira, Ana Carolina; Reid, Brian; Cao, Lin; Mannis, Mark J.; Schwab, Ivan R.; Zhao, Min (2011) Ionic Components of Electric Current at Rat Corneal Wounds. En: PLOS ONE. Vol. 6; No. 2; pp. e17411 1932-6203; Consultado en: 2021/05/10/09:59:58. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0017411. Disponible en: 10.1371/journal.pone.0017411.
Yu, Zhihua; Dou, Fangfang; Wang, Yanxia; Hou, Lina; Chen, Hongzhuan (2018) Ca2+-dependent endoplasmic reticulum stress correlation with astrogliosis involves upregulation of KCa3.1 and inhibition of AKT/mTOR signaling. En: Journal of Neuroinflammation. Vol. 15; No. 1; pp. 316 1742-2094; Disponible en: 10.1186/s12974-018-1351-x.
Zundler, Sebastian; Caioni, Massimiliano; Müller, Martina; Strauch, Ulrike; Kunst, Claudia; Woelfel, Gisela (2016) K+ Channel Inhibition Differentially Regulates Migration of Intestinal Epithelial Cells in Inflamed vs. Non-Inflamed Conditions in a PI3K/Akt-Mediated Manner. En: PLOS ONE. Vol. 11; No. 1; pp. e0147736 1932-6203; Consultado en: 2021/05/10/12:56:32. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0147736. Disponible en: 10.1371/journal.pone.0147736.
Bhattacharjee, Arin; Joiner, William J.; Wu, Meilin; Yang, Youshan; Sigworth, Fred J.; Kaczmarek, Leonard K. (2003) Slick (Slo2.1), a Rapidly-Gating Sodium-Activated Potassium Channel Inhibited by ATP. En: Journal of Neuroscience. Vol. 23; No. 37; pp. 11681-11691; 0270-6474, 1529-2401; Consultado en: 2021/05/10/14:23:53. Disponible en: https://www.jneurosci.org/content/23/37/11681. Disponible en: 10.1523/JNEUROSCI.23-37-11681.2003.
Bhattacharjee, Arin; von Hehn, Christian A. A.; Mei, Xiaofeng; Kaczmarek, Leonard K. (2005) Localization of the Na+-activated K+ channel Slick in the rat central nervous system. En: The Journal of Comparative Neurology. Vol. 484; No. 1; pp. 80-92; 0021-9967; Disponible en: 10.1002/cne.20462.
Tejada, Maria A.; Stople, Kathleen; Bomholtz, Sofia Hammami; Meinild, Anne-Kristine; Poulsen, Asser Nyander; Klaerke, Dan A. (2014) Cell Volume Changes Regulate Slick (Slo2.1), but Not Slack (Slo2.2) K+ Channels. En: PLOS ONE. Vol. 9; No. 10; pp. e110833 1932-6203; Consultado en: 2021/05/10/14:31:38. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0110833. Disponible en: 10.1371/journal.pone.0110833.
Tomasello, Danielle L.; Hurley, Edward; Wrabetz, Lawrence; Bhattacharjee, Arin (2017) Slick (Kcnt2) Sodium-Activated Potassium Channels Limit Peptidergic Nociceptor Excitability and Hyperalgesia. En: Journal of Experimental Neuroscience. Vol. 11; pp. 1179069517726996 1179-0695; Disponible en: 10.1177/1179069517726996.
Smith, Charles O.; Wang, Yves T.; Nadtochiy, Sergiy M.; Miller, James H.; Jonas, Elizabeth A.; Dirksen, Robert T.; Nehrke, Keith; Brookes, Paul S. (2018) Cardiac metabolic effects of KNa1.2 channel deletion and evidence for its mitochondrial localization. En: FASEB journal: official publication of the Federation of American Societies for Experimental Biology. pp. fj201800139R 1530-6860; Disponible en: 10.1096/fj.201800139R.
KCNMA1 Encoded Cardiac BK Channels Afford Protection against Ischemia-Reperfusion Injury. Consultado en: 2021/05/10/19:11:05. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0103402.
Gribkoff, Valentin K.; Starrett, John E.; Dworetzky, Steven I. (2001) Maxi-K Potassium Channels: Form, Function, and Modulation of a Class of Endogenous Regulators of Intracellular Calcium. En: The Neuroscientist. Vol. 7; No. 2; pp. 166-177; 1073-8584; Consultado en: 2021/05/10/19:38:33. Disponible en: https://doi.org/10.1177/107385840100700211. Disponible en: 10.1177/107385840100700211.
Toro, Ligia; Li, Min; Zhang, Zhu; Singh, Harpreet; Wu, Yong; Stefani, Enrico (2014) MaxiK channel and cell signalling. En: Pflugers Archiv : European journal of physiology. Vol. 466; No. 5; pp. 875-886; 0031-6768; Consultado en: 2021/05/10/19:50:03. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3969412/. Disponible en: 10.1007/s00424-013-1359-0.
Amano, Shiro; Kaji, Yuichi; Mimura, Tatsuya (2010) Biology of corneal endothelial cells in vivo and in vitro. En: Japanese Journal of Ophthalmology. Vol. 54; No. 3; pp. 211-214; 1613-2246; Disponible en: 10.1007/s10384-010-0799-8.
Dawczynski, Jens; Franke, Sibylle; Blum, Marcus; Kasper, Michael; Stein, Günter; Strobel, Jürgen (2002) Advanced glycation end-products in corneas of patients with keratoconus. En: Graefe's Archive for Clinical and Experimental Ophthalmology = Albrecht Von Graefes Archiv Fur Klinische Und Experimentelle Ophthalmologie. Vol. 240; No. 4; pp. 296-301; 0721-832X; Disponible en: 10.1007/s00417-002-0445-3.
Kase, Satoru; Ishida, Susumu; Rao, Narsing Adupa (2011) Immunolocalization of advanced glycation end products in human diabetic eyes: an immunohistochemical study. En: Journal of Diabetes Mellitus. Vol. 1; No. 3; pp. 57-62; Consultado en: 2021/05/10/22:24:16. Disponible en: http://www.scirp.org/Journal/Paperabs.aspx?paperid=7107. Disponible en: 10.4236/jdm.2011.13009.
Satoru, Kase; Susumu, Ishida; Narsing Adupa, Rao (2011) Immunolocalization of advanced glycation end products in human diabetic eyes: an immunohistochemical study. En: Journal of Diabetes Mellitus. Vol. 2011; 2160-5858; Consultado en: 2021/05/10/22:25:41. Disponible en: http://www.scirp.org/journal/PaperInformation.aspx?PaperID=7107. Disponible en: 10.4236/jdm.2011.13009.
Price, Marianne O.; Thompson, Robert W.; Price, Francis W. (2003) Risk factors for various causes of failure in initial corneal grafts. En: Archives of Ophthalmology (Chicago, Ill.: 1960). Vol. 121; No. 8; pp. 1087-1092; 0003-9950; Disponible en: 10.1001/archopht.121.8.1087.
Yu, Alice L.; Kaiser, Michaela; Schaumberger, Markus; Messmer, Elisabeth; Kook, Daniel; Welge-Lussen, Ulrich (2014) Donor-related risk factors and preoperative recipient-related risk factors for graft failure. En: Cornea. Vol. 33; No. 11; pp. 1149-1156; 1536-4798; Disponible en: 10.1097/ICO.0000000000000225.
Price, Marianne O.; Lisek, Marek; Feng, Matthew T.; Price, Francis W. (2017) Effect of Donor and Recipient Diabetes Status on Descemet Membrane Endothelial Keratoplasty Adherence and Survival. En: Cornea. Vol. 36; No. 10; pp. 1184-1188; 1536-4798; Disponible en: 10.1097/ICO.0000000000001305.
Zhao, Han; He, Yan; Ren, Yue-Rong; Chen, Bai-Hua (2019) Corneal alteration and pathogenesis in diabetes mellitus. En: International Journal of Ophthalmology. Vol. 12; No. 12; pp. 1939-1950; 2222-3959; Consultado en: 2021/05/10/23:27:13. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6901883/. Disponible en: 10.18240/ijo.2019.12.17.
ImageJ. Consultado en: 2021/05/11/09:28:05. Disponible en: https://imagej-nih-gov.ez.urosario.edu.co/ij/.
Ramteke, Pranay; Deb, Ankita; Shepal, Varsha; Bhat, Manoj Kumar (2019) Hyperglycemia Associated Metabolic and Molecular Alterations in Cancer Risk, Progression, Treatment, and Mortality. En: Cancers. Vol. 11; No. 9; 2072-6694; Consultado en: 2021/05/12/10:46:09. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6770430/. Disponible en: 10.3390/cancers11091402.
Lopez, Rebecca; Arumugam, Arunkumar; Joseph, Riya; Monga, Kanika; Boopalan, Thiyagarajan; Agullo, Pamela; Gutierrez, Christina; Nandy, Sushmita; Subramani, Ramadevi; Rosa, Jose Manuel de la; Lakshmanaswamy, Rajkumar (2013) Hyperglycemia Enhances the Proliferation of Non-Tumorigenic and Malignant Mammary Epithelial Cells through Increased leptin/IGF1R Signaling and Activation of AKT/mTOR. En: PLOS ONE. Vol. 8; No. 11; pp. e79708 1932-6203; Consultado en: 2021/05/12/10:57:24. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0079708. Disponible en: 10.1371/journal.pone.0079708.
Li, Wenjie; Zhang, Xuehui; Sang, Hui; Zhou, Ying; Shang, Chunyu; Wang, Yongqing; Zhu, Hong (2019) Effects of hyperglycemia on the progression of tumor diseases. En: Journal of Experimental & Clinical Cancer Research. Vol. 38; No. 1; pp. 327 1756-9966; Consultado en: 2021/05/12/11:32:00. Disponible en: https://doi.org/10.1186/s13046-019-1309-6. Disponible en: 10.1186/s13046-019-1309-6.
Wolf, Gunter (2000) Cell cycle regulation in diabetic nephropathy. En: Kidney International. Diabetic kidney disease research: Where do we stand at the turn of the century?; Vol. 58; pp. S59-S66; 0085-2538; Consultado en: 2021/05/12/15:22:50. Disponible en: https://www.sciencedirect.com/science/article/pii/S0085253815474241. Disponible en: 10.1046/j.1523-1755.2000.07710.x.
Jannière, Laurent; Canceill, Danielle; Suski, Catherine; Kanga, Sophie; Dalmais, Bérengère; Lestini, Roxane; Monnier, Anne-Françoise; Chapuis, Jérôme; Bolotin, Alexander; Titok, Marina; Chatelier, Emmanuelle Le; Ehrlich, S. Dusko (2007) Genetic Evidence for a Link Between Glycolysis and DNA Replication. En: PLOS ONE. Vol. 2; No. 5; pp. e447 1932-6203; Consultado en: 2021/05/12/16:25:47. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0000447. Disponible en: 10.1371/journal.pone.0000447.
da Veiga Moreira, Jorgelindo; Peres, Sabine; Steyaert, Jean-Marc; Bigan, Erwan; Paulevé, Loïc; Nogueira, Marcel Levy; Schwartz, Laurent (2015) Cell cycle progression is regulated by intertwined redox oscillators. En: Theoretical Biology and Medical Modelling. Vol. 12; No. 1; pp. 10 1742-4682; Consultado en: 2021/05/12/16:52:31. Disponible en: https://doi.org/10.1186/s12976-015-0005-2. Disponible en: 10.1186/s12976-015-0005-2.
Nagy, Tamás; Fisi, Viktória; Frank, Dorottya; Kátai, Emese; Nagy, Zsófia; Miseta, Attila (2019) Hyperglycemia-Induced Aberrant Cell Proliferation; A Metabolic Challenge Mediated by Protein O-GlcNAc Modification. En: Cells. Vol. 8; No. 9; pp. 999 Consultado en: 2021/05/12/18:28:54. Disponible en: https://www.mdpi.com/2073-4409/8/9/999. Disponible en: 10.3390/cells8090999.
Yoon, Chang Ki; Yoon, Sam Young; Hwang, Jin Sun; Shin, Young Joo (2020) O-GlcNAc Signaling Augmentation Protects Human Corneal Endothelial Cells from Oxidative Stress via AKT Pathway Activation. En: Current Eye Research. Vol. 45; No. 5; pp. 556-562; 0271-3683; Consultado en: 2021/05/12/20:38:11. Disponible en: https://doi.org/10.1080/02713683.2019.1686154. Disponible en: 10.1080/02713683.2019.1686154.
Kruse, Carla R.; Singh, Mansher; Sørensen, Jens A.; Eriksson, Elof; Nuutila, Kristo (2016) The effect of local hyperglycemia on skin cells in vitro and on wound healing in euglycemic rats. En: Journal of Surgical Research. Vol. 206; No. 2; pp. 418-426; 0022-4804, 1095-8673; Consultado en: 2021/05/12/21:43:59. Disponible en: https://www.journalofsurgicalresearch.com/article/S0022-4804(16)30332-8/abstract. Disponible en: 10.1016/j.jss.2016.08.060.
Slawson, Chad; Zachara, Natasha E.; Vosseller, Keith; Cheung, Win D.; Lane, M. Daniel; Hart, Gerald W. (2005) Perturbations in O-linked β-N-Acetylglucosamine Protein Modification Cause Severe Defects in Mitotic Progression and Cytokinesis*. En: Journal of Biological Chemistry. Vol. 280; No. 38; pp. 32944-32956; 0021-9258; Consultado en: 2021/05/12/22:00:54. Disponible en: https://www.sciencedirect.com/science/article/pii/S0021925820791544. Disponible en: 10.1074/jbc.M503396200.
Pahwa, Heena; Khan, Md Touseef; Sharan, Kunal (2020) Hyperglycemia impairs osteoblast cell migration and chemotaxis due to a decrease in mitochondrial biogenesis. En: Molecular and Cellular Biochemistry. Vol. 469; No. 1-2; pp. 109-118; 1573-4919; Disponible en: 10.1007/s11010-020-03732-8.
Hsu, Chih-Chin; Chen, Carl Pai-Chu; Tsai, Wen-Chung; Yu, Shin-Ying; Wang, Jong-Shyan (2011) Measurement of Keratinocyte Migration in Hyperglycemia Media with an Electric Wound-Healing Assay. En: The FASEB Journal. Vol. 25; No. S1; pp. 680.1-680.1; 1530-6860; Consultado en: 2021/05/12/22:47:33. Disponible en: https://faseb.onlinelibrary.wiley.com/doi/abs/10.1096/fasebj.25.1_supplement.680.1. Disponible en: https://doi.org/10.1096/fasebj.25.1_supplement.680.1.
Rikitake, Yoshiyuki; Liao, James K. (2005) Rho-kinase mediates hyperglycemia-induced plasminogen activator inhibitor-1 expression in vascular endothelial cells. En: Circulation. Vol. 111; No. 24; pp. 3261-3268; 1524-4539; Disponible en: 10.1161/CIRCULATIONAHA.105.534024.
Akhtar, R. A.; Chaouchi, K. M. (2004) Effects of Hyperglycemia on Cell Migration and Proliferation, and Phospholipase C1 in Rabbit Corneal Epithelial Cells. En: Investigative Ophthalmology & Visual Science. Vol. 45; No. 13; pp. 3799-3799; 1552-5783; Consultado en: 2021/05/12/23:09:39. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2409333.
Okumura, Naoki; Ueno, Morio; Koizumi, Noriko; Sakamoto, Yuji; Hirata, Kana; Hamuro, Junji; Kinoshita, Shigeru (2009) Enhancement on Primate Corneal Endothelial Cell Survival In Vitro by a ROCK Inhibitor. En: Investigative Ophthalmology & Visual Science. Vol. 50; No. 8; pp. 3680-3687; 1552-5783; Consultado en: 2021/05/12/23:46:58. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2185592. Disponible en: 10.1167/iovs.08-2634.
Koizumi, Noriko; Okumura, Naoki; Ueno, Morio; Nakagawa, Hiroko; Hamuro, Junji; Kinoshita, Shigeru (2013) Rho-associated kinase inhibitor eye drop treatment as a possible medical treatment for Fuchs corneal dystrophy. En: Cornea. Vol. 32; No. 8; pp. 1167-1170; 1536-4798; Disponible en: 10.1097/ICO.0b013e318285475d.
Wang, H. Z.; Wu, K. Y.; Lin, C. P.; Fong, J. C.; Hong, S. J. (1997) Alteration of glucose uptake in cultured human corneal endothelial cells grown in high glucose media via cAMP-dependent pathway. En: The Kaohsiung Journal of Medical Sciences. Vol. 13; No. 9; pp. 566-571; 1607-551X
Stuard, Whitney L.; Titone, Rossella; Robertson, Danielle M. (2020) The IGF/Insulin-IGFBP Axis in Corneal Development, Wound Healing, and Disease. En: Frontiers in Endocrinology. Vol. 11; 1664-2392; Consultado en: 2021/05/13/21:59:11. Disponible en: https://www.frontiersin.org/articles/10.3389/fendo.2020.00024/full. Disponible en: 10.3389/fendo.2020.00024.
Takahashi, Hiroshi; Ohara, Kunitoshi; Ohmura, Takeo; Takahashi, Ryoki; Zieske, James D (2000) Glucose Transporter 1 Expression in Corneal Wound Repair under High Serum Glucose Level. En: Japanese Journal of Ophthalmology. Vol. 44; No. 5; pp. 470-474; 0021-5155; Consultado en: 2021/05/13/23:47:23. Disponible en: https://www.sciencedirect.com/science/article/pii/S0021515500002227. Disponible en: 10.1016/S0021-5155(00)00222-7.
STRING: functional protein association networks. Consultado en: 2021/05/14/00:07:07. Disponible en: https://string-db.org/.
Philipp, Wolfgang; Speicher, Lilly; Humpel, Christian (2000) Expression of Vascular Endothelial Growth Factor and Its Receptors in Inflamed and Vascularized Human Corneas. En: Investigative Ophthalmology & Visual Science. Vol. 41; No. 9; pp. 2514-2522; 1552-5783; Consultado en: 2021/05/14/11:21:28. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2162302.
Deardorff, Phillip M.; McKay, Tina B.; Wang, Siran; Ghezzi, Chiara E.; Cairns, Dana M.; Abbott, Rosalyn D.; Funderburgh, James L.; Kenyon, Kenneth R.; Kaplan, David L. (2018) Modeling Diabetic Corneal Neuropathy in a 3D In Vitro Cornea System. En: Scientific Reports. Vol. 8; No. 1; pp. 17294 2045-2322; Consultado en: 2021/05/15/01:12:05. Disponible en: https://www.nature.com/articles/s41598-018-35917-z. Disponible en: 10.1038/s41598-018-35917-z.
Kovatchev, Boris P.; Otto, Erik; Cox, Daniel; Gonder-Frederick, Linda; Clarke, William (2006) Evaluation of a New Measure of Blood Glucose Variability in Diabetes. En: Diabetes Care. Vol. 29; No. 11; pp. 2433-2438; 0149-5992, 1935-5548; Consultado en: 2021/05/15/01:22:08. Disponible en: https://care.diabetesjournals.org/content/29/11/2433. Disponible en: 10.2337/dc06-1085.
Olaniyan, Mathew Folaranmi; Babatunde, Elizabeth Moyinoluwa (2016) Preventive (myoglobin, transferrin) and scavenging (superoxide dismutase, glutathione peroxidase) anti-oxidative properties of raw liquid extract of Morinda lucida leaf in the traditional treatment of Plasmodium infection. En: Journal of Natural Science, Biology, and Medicine. Vol. 7; No. 1; pp. 47-53; 0976-9668; Disponible en: 10.4103/0976-9668.175068.
Tinggi, Ujang (2008) Selenium: its role as antioxidant in human health. En: Environmental Health and Preventive Medicine. Vol. 13; No. 2; pp. 102-108; 1342-078X; Consultado en: 2021/05/15/09:26:03. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2698273/. Disponible en: 10.1007/s12199-007-0019-4.
Fanger, Christopher M.; Ghanshani, Sanjiv; Logsdon, Naomi J.; Rauer, Heiko; Kalman, Katalin; Zhou, Jianming; Beckingham, Kathy; Chandy, K. George; Cahalan, Michael D.; Aiyar, Jayashree (1999) Calmodulin Mediates Calcium-dependent Activation of the Intermediate Conductance KCa Channel,IKCa1 *. En: Journal of Biological Chemistry. Vol. 274; No. 9; pp. 5746-5754; 0021-9258; Consultado en: 2021/05/15/11:32:45. Disponible en: https://www.sciencedirect.com/science/article/pii/S0021925819877189. Disponible en: 10.1074/jbc.274.9.5746.
Wulff, Heike; Castle, Neil A. (2010) Therapeutic potential of KCa3.1 blockers: an overview of recent advances, and promising trends. En: Expert Review of Clinical Pharmacology. Vol. 3; No. 3; pp. 385-396; 1751-2433; Consultado en: 2021/05/15/11:37:25. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3347644/. Disponible en: 10.1586/ecp.10.11.
Ghanshani, S.; Wulff, H.; Miller, M. J.; Rohm, H.; Neben, A.; Gutman, G. A.; Cahalan, M. D.; Chandy, K. G. (2000) Up-regulation of the IKCa1 potassium channel during T-cell activation. Molecular mechanism and functional consequences. En: The Journal of Biological Chemistry. Vol. 275; No. 47; pp. 37137-37149; 0021-9258; Disponible en: 10.1074/jbc.M003941200.
Grgic, Ivica; Eichler, Ines; Heinau, Philipp; Si, Han; Brakemeier, Susanne; Hoyer, Joachim; Köhler, Ralf (2005) Selective blockade of the intermediate-conductance Ca2+-activated K+ channel suppresses proliferation of microvascular and macrovascular endothelial cells and angiogenesis in vivo. En: Arteriosclerosis, Thrombosis, and Vascular Biology. Vol. 25; No. 4; pp. 704-709; 1524-4636; Disponible en: 10.1161/01.ATV.0000156399.12787.5c.
Schilling, Tom; Stock, Christian; Schwab, Albrecht; Eder, Claudia (2004) Functional importance of Ca2+-activated K+ channels for lysophosphatidic acid-induced microglial migration. En: The European Journal of Neuroscience. Vol. 19; No. 6; pp. 1469-1474; 0953-816X; Disponible en: 10.1111/j.1460-9568.2004.03265.x.
Lang, Philipp A.; Kaiser, Stefanie; Myssina, Swetlana; Wieder, Thomas; Lang, Florian; Huber, Stephan M. (2003) Role of Ca2+-activated K+ channels in human erythrocyte apoptosis. En: American Journal of Physiology. Cell Physiology. Vol. 285; No. 6; pp. C1553-1560; 0363-6143; Disponible en: 10.1152/ajpcell.00186.2003.
Elliott, James I.; Higgins, Christopher F. (2003) IKCa1 activity is required for cell shrinkage, phosphatidylserine translocation and death in T lymphocyte apoptosis. En: EMBO Reports. Vol. 4; No. 2; pp. 189-194; 1469-221X; Consultado en: 2021/05/15/12:00:05. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1315824/. Disponible en: 10.1038/sj.embor.embor722.
Begenisich, Ted; Nakamoto, Tesuji; Ovitt, Catherine E.; Nehrke, Keith; Brugnara, Carlo; Alper, Seth L.; Melvin, James E. (2004) Physiological roles of the intermediate conductance, Ca2+-activated potassium channel Kcnn4. En: The Journal of Biological Chemistry. Vol. 279; No. 46; pp. 47681-47687; 0021-9258; Disponible en: 10.1074/jbc.M409627200.
Wulff, Heike; Miller, Mark J.; Hänsel, Wolfram; Grissmer, Stephan; Cahalan, Michael D.; Chandy, K. George (2000) Design of a potent and selective inhibitor of the intermediate-conductance Ca2+-activated K+ channel, IKCa1: A potential immunosuppressant. En: Proceedings of the National Academy of Sciences of the United States of America. Vol. 97; No. 14; pp. 8151-8156; 0027-8424; Consultado en: 2021/05/15/12:32:36. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC16685/.
Brugnara, C; Gee, B; Armsby, C C; Kurth, S; Sakamoto, M; Rifai, N; Alper, S L; Platt, O S (1996) Therapy with oral clotrimazole induces inhibition of the Gardos channel and reduction of erythrocyte dehydration in patients with sickle cell disease. En: Journal of Clinical Investigation. Vol. 97; No. 5; pp. 1227-1234; 0021-9738; Consultado en: 2021/05/15/12:52:58. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC507175/.
K+ channels as targets for specific immunomodulation. Consultado en: 2021/05/15/12:53:21. Disponible en: https://www-ncbi-nlm-nih-gov.ez.urosario.edu.co/pmc/articles/PMC2749963/.
Maezawa, Izumi; Jenkins, David Paul; Jin, Benjamin E.; Wulff, Heike (2012) Microglial KCa3.1 Channels as a Potential Therapeutic Target for Alzheimer’s Disease. En: International Journal of Alzheimer’s Disease. Vol. 2012; pp. e868972 2090-8024; Consultado en: 2021/05/15/20:24:08. Disponible en: https://www.hindawi.com/journals/ijad/2012/868972/. Disponible en: 10.1155/2012/868972.
Huang, Chunling; Yi, Hao; Shi, Ying; Cao, Qinghua; Shi, Yin; Cheng, Delfine; Braet, Filip; Chen, Xin-Ming; Pollock, Carol A. (2021) KCa3.1 Mediates Dysregulation of Mitochondrial Quality Control in Diabetic Kidney Disease. En: Frontiers in Cell and Developmental Biology. Vol. 9; pp. 573814 2296-634X; Disponible en: 10.3389/fcell.2021.573814.
Zhu, Yan-Rong; Jiang, Xiao-Xin; Zhang, Dai-Min (2019) Critical regulation of atherosclerosis by the KCa3.1 channel and the retargeting of this therapeutic target in in-stent neoatherosclerosis. En: Journal of Molecular Medicine. Vol. 97; No. 9; pp. 1219-1229; 1432-1440; Consultado en: 2021/05/15/23:21:13. Disponible en: https://doi.org/10.1007/s00109-019-01814-9. Disponible en: 10.1007/s00109-019-01814-9.
Su, Xing-Li; Zhang, Hong; Yu, Wei; Wang, Shuang; Zhu, Wei-Jun (2013) Role of KCa3.1 channels in proliferation and migration of vascular smooth muscle cells by diabetic rat serum. En: The Chinese Journal of Physiology. Vol. 56; No. 3; pp. 155-162; 0304-4920; Disponible en: 10.4077/CJP.2013.BAB104.
Lin, Mike T.; Adelman, John P.; Maylie, James (2012) Modulation of endothelial SK3 channel activity by Ca2+-dependent caveolar trafficking. En: American Journal of Physiology-Cell Physiology. Vol. 303; No. 3; pp. C318-C327; 0363-6143; Consultado en: 2021/05/16/01:56:16. Disponible en: https://journals.physiology.org/doi/full/10.1152/ajpcell.00058.2012. Disponible en: 10.1152/ajpcell.00058.2012.
Roy, J. W.; Cowley, E. A.; Blay, J.; Linsdell, P. (2010) The intermediate conductance Ca2+-activated K+ channel inhibitor TRAM-34 stimulates proliferation of breast cancer cells via activation of oestrogen receptors. En: British Journal of Pharmacology. Vol. 159; No. 3; pp. 650-658; 1476-5381; Disponible en: 10.1111/j.1476-5381.2009.00557.x.
1-EBIO | #E-150 | CAS 10045-45-1. En: Alomone Labs. Consultado en: 2021/05/16/16:54:34. Disponible en: https://www.alomone.com/p/1-ebio/E-150.
Chadha, Preet S.; Liu, Lu; Rikard-Bell, Matt; Senadheera, Sevvandi; Howitt, Lauren; Bertrand, Rebecca L.; Grayson, T. Hilton; Murphy, Timothy V.; Sandow, Shaun L. (2011) Endothelium-Dependent Vasodilation in Human Mesenteric Artery Is Primarily Mediated by Myoendothelial Gap Junctions Intermediate Conductance Calcium-Activated K+ Channel and Nitric Oxide. En: Journal of Pharmacology and Experimental Therapeutics. Vol. 336; No. 3; pp. 701-708; 0022-3565, 1521-0103; Consultado en: 2021/05/16/21:16:58. Disponible en: https://jpet.aspetjournals.org/content/336/3/701. Disponible en: 10.1124/jpet.110.165795.
Maldonado, Oscar; Jenkins, Alexandra; Belalcazar, Helen M.; Hernandez-Cuervo, Helena; Hyman, Katelynn M.; Ladaga, Giannina; Padilla, Lucia; Erausquin, Gabriel A. de (2020) Age-dependent neuroprotective effect of an SK3 channel agonist on excitotoxity to dopaminergic neurons in organotypic culture. En: PLOS ONE. Vol. 15; No. 7; pp. e0223633 1932-6203; Consultado en: 2021/05/16/21:22:09. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0223633. Disponible en: 10.1371/journal.pone.0223633.
Spergel, Daniel J. (2007) Calcium and Small-Conductance Calcium-Activated Potassium Channels in Gonadotropin-Releasing Hormone Neurons before, during, and after Puberty. En: Endocrinology. Vol. 148; No. 5; pp. 2383-2390; 0013-7227; Consultado en: 2021/05/16/21:31:39. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3315592/. Disponible en: 10.1210/en.2006-1693.
Kanawa, Surbhi; Jain, Kalpna; Sagar, Vinod; Yadav, Dinesh K. (2021) Evaluation of changes in corneal endothelium in chronic kidney disease. En: Indian Journal of Ophthalmology. Vol. 69; No. 5; pp. 1080-1083; 0301-4738; Consultado en: 2021/05/17/01:56:10. Disponible en: https://journals.lww.com/ijo/Fulltext/2021/05000/Evaluation_of_changes_in_corneal_endothelium_in.14.aspx. Disponible en: 10.4103/ijo.IJO_1764_20.
Bi, Dan; Toyama, Kazuyoshi; Lemaître, Vincent; Takai, Jun; Fan, Fan; Jenkins, David P.; Wulff, Heike; Gutterman, David D.; Park, Frank; Miura, Hiroto (2013) The Intermediate Conductance Calcium-activated Potassium Channel KCa3.1 Regulates Vascular Smooth Muscle Cell Proliferation via Controlling Calcium-dependent Signaling*. En: Journal of Biological Chemistry. Vol. 288; No. 22; pp. 15843-15853; 0021-9258; Consultado en: 2021/05/18/06:49:21. Disponible en: https://www.sciencedirect.com/science/article/pii/S002192582045971X. Disponible en: 10.1074/jbc.M112.427187.
Manaves, Vlasios; Qin, Wuxuan; Bauer, Amy L.; Rossie, Sandra; Kobayashi, Masakazu; Rane, Stanley G. (2004) Calcium and Vitamin D increase mRNA levels for the growth control hIK1 channel in human epidermal keratinocytes but functional channels are not observed. En: BMC Dermatology. Vol. 4; No. 1; pp. 7 1471-5945; Consultado en: 2021/05/18/07:02:24. Disponible en: https://doi.org/10.1186/1471-5945-4-7. Disponible en: 10.1186/1471-5945-4-7.
De Marchi, Umberto; Sassi, Nicola; Fioretti, Bernard; Catacuzzeno, Luigi; Cereghetti, Grazia M.; Szabò, Ildikò; Zoratti, Mario (2009) Intermediate conductance Ca2+-activated potassium channel (KCa3.1) in the inner mitochondrial membrane of human colon cancer cells. En: Cell Calcium. Vol. 45; No. 5; pp. 509-516; 1532-1991; Disponible en: 10.1016/j.ceca.2009.03.014.
Lee, Elbert L.; Hasegawa, Yuichi; Shimizu, Takahiro; Okada, Yasunobu (2008) IK1 channel activity contributes to cisplatin sensitivity of human epidermoid cancer cells. En: American Journal of Physiology-Cell Physiology. Vol. 294; No. 6; pp. C1398-C1406; 0363-6143; Consultado en: 2021/05/18/08:01:47. Disponible en: https://journals.physiology.org/doi/full/10.1152/ajpcell.00428.2007. Disponible en: 10.1152/ajpcell.00428.2007.
Gospodarowicz, Denis; Mescher, Anthony L.; Birdwell, Charles R. (1977) Stimulation of corneal endothelial cell proliferation in vitro by fibroblast and epidermal growth factors. En: Experimental Eye Research. Vol. 25; No. 1; pp. 75-89; 0014-4835; Consultado en: 2021/05/18/22:54:42. Disponible en: https://www.sciencedirect.com/science/article/pii/0014483577902482. Disponible en: 10.1016/0014-4835(77)90248-2.
Zhao, Li-Mei; Zhang, Wei; Wang, Li-Ping; Li, Gui-Rong; Deng, Xiu-Ling (2012) Advanced glycation end products promote proliferation of cardiac fibroblasts by upregulation of KCa3.1 channels. En: Pflügers Archiv. Vol. 464; No. 6; pp. 613-621; 1432-2013; Consultado en: 2021/05/18/23:20:56. Disponible en: https://doi.org/10.1007/s00424-012-1165-0. Disponible en: 10.1007/s00424-012-1165-0.
Catacuzzeno, Luigi; Aiello, Francesco; Fioretti, Bernard; Sforna, Luigi; Castigli, Emilia; Ruggieri, Paola; Tata, Ada Maria; Calogero, Antonella; Franciolini, Fabio (2011) Serum-activated K and Cl currents underlay U87-MG glioblastoma cell migration. En: Journal of Cellular Physiology. Vol. 226; No. 7; pp. 1926-1933; 1097-4652; Disponible en: 10.1002/jcp.22523.
Cuddapah, Vishnu Anand; Habela, Christa W.; Watkins, Stacey; Moore, Lindsay S.; Barclay, Tia-Tabitha C.; Sontheimer, Harald (2012) Kinase activation of ClC-3 accelerates cytoplasmic condensation during mitotic cell rounding. En: American Journal of Physiology. Cell Physiology. Vol. 302; No. 3; pp. C527-538; 1522-1563; Disponible en: 10.1152/ajpcell.00248.2011.
Catacuzzeno, Luigi; Franciolini, Fabio (2018) Role of KCa3.1 Channels in Modulating Ca2+ Oscillations during Glioblastoma Cell Migration and Invasion. En: International Journal of Molecular Sciences. Vol. 19; No. 10; pp. 2970 Consultado en: 2021/05/19/01:05:35. Disponible en: https://www.mdpi.com/1422-0067/19/10/2970. Disponible en: 10.3390/ijms19102970.
Gao, Ya-dong; Hanley, Peter J.; Rinné, Susanne; Zuzarte, Marylou; Daut, Jurgen (2010) Calcium-activated K(+) channel (K(Ca)3.1) activity during Ca(2+) store depletion and store-operated Ca(2+) entry in human macrophages. En: Cell Calcium. Vol. 48; No. 1; pp. 19-27; 1532-1991; Disponible en: 10.1016/j.ceca.2010.06.002.
Fioretti, Bernard; Catacuzzeno, Luigi; Sforna, Luigi; Aiello, Francesco; Pagani, Francesca; Ragozzino, Davide; Castigli, Emilia; Franciolini, Fabio (2009) Histamine hyperpolarizes human glioblastoma cells by activating the intermediate-conductance Ca2+-activated K+ channel. En: American Journal of Physiology. Cell Physiology. Vol. 297; No. 1; pp. C102-110; 1522-1563; Disponible en: 10.1152/ajpcell.00354.2008.
Jakakul, Chanon; Kanjanasirirat, Phongthon; Muanprasat, Chatchai (2021) Development of a Cell-Based Assay for Identifying KCa3.1 Inhibitors Using Intestinal Epithelial Cell Lines. En: SLAS DISCOVERY: Advancing the Science of Drug Discovery. Vol. 26; No. 3; pp. 439-449; 2472-5552; Consultado en: 2021/05/19/01:51:41. Disponible en: https://doi.org/10.1177/2472555220950661. Disponible en: 10.1177/2472555220950661.
Liu, Yu; Zhao, Liang; Ma, Wenya; Cao, Xuefeng; Chen, Hongyang; Feng, Dan; Liang, Jing; Yin, Kun; Jiang, Xiaofeng (2015) The Blockage of KCa3.1 Channel Inhibited Proliferation, Migration and Promoted Apoptosis of Human Hepatocellular Carcinoma Cells. En: Journal of Cancer. Vol. 6; No. 7; pp. 643-651; 1837-9664; Consultado en: 2021/05/19/01:59:47. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4466414/. Disponible en: 10.7150/jca.11913.
Petho, Zoltan; Balajthy, Andras; Bartok, Adam; Bene, Krisztian; Somodi, Sandor; Szilagyi, Orsolya; Rajnavolgyi, Eva; Panyi, Gyorgy; Varga, Zoltan (2016) The anti-proliferative effect of cation channel blockers in T lymphocytes depends on the strength of mitogenic stimulation. En: Immunology Letters. Vol. 171; pp. 60-69; 0165-2478; Consultado en: 2021/05/19/09:30:31. Disponible en: https://www.sciencedirect.com/science/article/pii/S0165247816300128. Disponible en: 10.1016/j.imlet.2016.02.003.
Petho, Zoltan; Balajthy, Andras; Bartok, Adam; Bene, Krisztian; Somodi, Sandor; Szilagyi, Orsolya; Rajnavolgyi, Eva; Panyi, Gyorgy; Varga, Zoltan (2016) The anti-proliferative effect of cation channel blockers in T lymphocytes depends on the strength of mitogenic stimulation. En: Immunology Letters. Vol. 171; pp. 60-69; 0165-2478; Consultado en: 2021/05/19/09:48:32. Disponible en: https://www.sciencedirect.com/science/article/pii/S0165247816300128. Disponible en: 10.1016/j.imlet.2016.02.003.
Aketa, Naohiko; Uchino, Miki; Kawashima, Motoko; Uchino, Yuichi; Yuki, Kenya; Ozawa, Yoko; Sasaki, Mariko; Yamagishi, Kazumasa; Sawada, Norie; Tsugane, Shoichiro; Tsubota, Kazuo; Iso, Hiroyasu (2021) Myopia, corneal endothelial cell density and morphology in a Japanese population-based cross-sectional study: the JPHC-NEXT Eye Study. En: Scientific Reports. Vol. 11; No. 1; pp. 6366 2045-2322; Consultado en: 2021/05/19/23:15:15. Disponible en: https://www.nature.com/articles/s41598-021-85617-4. Disponible en: 10.1038/s41598-021-85617-4.
Cárdenas Díaz, Taimi; Corcho Arévalo, Yeni; Torres Ortega, Rosario; Capote Cabrera, Armando; Hernández López, Iván; Cruz Izquierdo, Dunia (2013) Caracterización del endotelio corneal en pacientes con indicación de cirugía de catarata. En: Revista Cubana de Oftalmología. Vol. 26; No. 1; pp. 39-47; 0864-2176; Consultado en: 2021/05/19/23:15:47. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S0864-21762013000100005&lng=es&nrm=iso&tlng=es.
Liu, Cailing; Miyajima, Taiga; Melangath, Geetha; Miyai, Takashi; Vasanth, Shivakumar; Deshpande, Neha; Kumar, Varun; Ong Tone, Stephan; Gupta, Reena; Zhu, Shan; Vojnovic, Dijana; Chen, Yuming; Rogan, Eleanor G.; Mondal, Bodhiswatta; Zahid, Muhammad; Jurkunas, Ula V. (2020) Ultraviolet A light induces DNA damage and estrogen-DNA adducts in Fuchs endothelial corneal dystrophy causing females to be more affected. En: Proceedings of the National Academy of Sciences of the United States of America. Vol. 117; No. 1; pp. 573-583; 0027-8424; Consultado en: 2021/05/19/23:16:20. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6955350/. Disponible en: 10.1073/pnas.1912546116.
R: The R Project for Statistical Computing. Consultado en: 2021/06/02/17:05:44. Disponible en: https://www.r-project.org/.
Feizi, Sepehr (2018) Corneal endothelial cell dysfunction: etiologies and management. En: Therapeutic Advances in Ophthalmology. Vol. 10; 2515-8414; Consultado en: 2021/06/02/19:50:34. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6293368/. Disponible en: 10.1177/2515841418815802.
Anbar, Mohamed; Mohamed Mostafa, Engy; Elhawary, Ashraf Mostafa; Awny, Islam; Farouk, Mahmoud Mohamed; Mounir, Amr (2019) Evaluation of Corneal Higher-Order Aberrations by Scheimpflug–Placido Topography in Patients with Different Refractive Errors: A Retrospective Observational Study. En: Journal of Ophthalmology. Vol. 2019; 2090-004X; Consultado en: 2021/06/02/21:52:31. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6589193/. Disponible en: 10.1155/2019/5640356.
Repositorio EdocUR-U. Rosario
Universidad del Rosario
instacron:Universidad del Rosario
La córnea es el lente que protege la superficie anterior del ojo y su transparencia es clave para permitir la visión. Esta característica en gran medida está determinada por la actividad de las células de su capa más profunda, el endotelio corn
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0e7d3be579f186636b5cb2747a8a3e51
Publikováno v:
Revista de la Facultad de Ciencias de la Salud, Vol 10, Iss 1, Pp 53-60 (2008)
El uso común de opióides y derivados opióides hace necesario el conocimiento de los fundamentos bioquímicos, farmacogenéticos, y en general de los mecanismos farmacocinéticos de estas sustancias; estos ayudan a explicar las propiedades antinoci
Externí odkaz:
https://doaj.org/article/4e4fbc70586e4e1696186c54443d0c7c
Autor:
Razquin Lizarraga, Amaia
Publikováno v:
Addi. Archivo Digital para la Docencia y la Investigación
instname
Digital.CSIC. Repositorio Institucional del CSIC
instname
Digital.CSIC. Repositorio Institucional del CSIC
[EN]: In this work a computational analysis of 12 mutations in the potassium channel KCNQ2 is done. For that purpose the macromolecular modeling software Rosetta is used. This mutations are relevant because they are related to a rare epilepsy disorde
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::1908969a91dc6ce4a17901a547cd501f
http://hdl.handle.net/10810/54319
http://hdl.handle.net/10810/54319
Autor:
Coloma Borrás, Pablo
Publikováno v:
RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia
instname
instname
[ES] Todos los seres vivos necesitan servirse de los canales de iones para regular la concentración de iones en el interior y exterior celular. Focalizando en las especies vegetales, el potasio (K+) es el catión más importante debido a que tiene u
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::70d4408efc349ca143e267333bc7953d
https://hdl.handle.net/10251/171351
https://hdl.handle.net/10251/171351
Autor:
Juárez Mora, Francisco
Publikováno v:
Benemérita Universidad Autónoma de Puebla
BUAP
Repositorio Institucional de Acceso Abierto RIAA-BUAP
BUAP
Repositorio Institucional de Acceso Abierto RIAA-BUAP
“El vértigo, el mareo y el desequilibrio son los principales síntomas de los trastornos vestibulares. En niños con problemas de fijación de la mirada asociado con disfunción vestibular pueden llevar a problemas de lectura y repercutir sobre su
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3056::2b4eac3c105bb2ea0d970696df99c5fc
Autor:
Sandra Díaz del Moral, Silvia Barrena, Francisco Hernández-Torres, Amelia Aránega, José Manuel Villaescusa, Juan José Gómez Doblas, Diego Franco, Manuel Jiménez-Navarro, Ramón Muñoz-Chápuli, Rita Carmona
Publikováno v:
Frontiers in Cell and Developmental Biology, Vol 9 (2021)
Digibug. Repositorio Institucional de la Universidad de Granada
instname
Frontiers in Cell and Developmental Biology
Digibug. Repositorio Institucional de la Universidad de Granada
instname
Frontiers in Cell and Developmental Biology
This work was supported by: Spanish Ministry of Economy, Industry and Competitivity (BFU2017-83907-P to RM-C and RC and PID2019-107492GB-I00 to AA and DF), Consejeria de Salud, Junta de Andalucia (PC0066?2017/PC-0081-2017 to RC, JV, and JG), Institut
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4c99eb440e5a568401e2a6311feebfa1
https://hdl.handle.net/10668/4505
https://hdl.handle.net/10668/4505
Autor:
Melisa Moncada
Publikováno v:
SEDICI (UNLP)
Universidad Nacional de La Plata
instacron:UNLP
Universidad Nacional de La Plata
instacron:UNLP
En este trabajo de Tesis doctoral investigamos en profundidad el mecanismo de acción del ácido araquidónico (AA) sobre el canal de potasio BK asociado a la subunidad β1. Demostramos que el AA es capaz de activar al canal BK cuando el mismo se enc
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1d264976d7658cf6be88878cb8f2187c
https://doi.org/10.35537/10915/115445
https://doi.org/10.35537/10915/115445