Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Camilo Fosco"'
Publikováno v:
Journal of Vision. 22:4079
Autor:
Vincent Casser, Peter O'Donovan, Camilo Fosco, Aaron Hertzmann, Amish Kumar Bedi, Zoya Bylinskii
Publikováno v:
UIST
This paper introduces a Unified Model of Saliency and Importance (UMSI), which learns to predict visual importance in input graphic designs, and saliency in natural images, along with a new dataset and applications. Previous methods for predicting sa
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::92c75ecf3f61ba4c32144e5fcc25ce29
http://arxiv.org/abs/2008.02912
http://arxiv.org/abs/2008.02912
Autor:
Zoya Bylinskii, Barry A. McNamara, Anelise Newman, Camilo Fosco, Nam Wook Kim, Pat Sukhum, Matthew Tancik, Yun Bin Zhang
Publikováno v:
CHI
Eye movements provide insight into what parts of an image a viewer finds most salient, interesting, or relevant to the task at hand. Unfortunately, eye tracking data, a commonly-used proxy for attention, is cumbersome to collect. Here we explore an a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d9b30a9a651e21f2a3449dcf26c0ee9d
http://arxiv.org/abs/2001.04461
http://arxiv.org/abs/2001.04461
Autor:
Carl Vondrick, Alex Andonian, Allen S. Lee, Mathew Monfort, Rogerio Feris, Aude Oliva, Camilo Fosco
Publikováno v:
Computer Vision – ECCV 2020 ISBN: 9783030585228
ECCV (18)
ECCV (18)
Identifying common patterns among events is a key capability for human and machine perception, as it underlies intelligent decision making. Here, we propose an approach for learning semantic relational set abstractions on videos, inspired by human le
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::4d6a726d14bba8aec0ce0feff7da1e84
https://doi.org/10.1007/978-3-030-58523-5_2
https://doi.org/10.1007/978-3-030-58523-5_2
Publikováno v:
Computer Vision – ECCV 2020 ISBN: 9783030585167
ECCV (16)
ECCV (16)
A key capability of an intelligent system is deciding when events from past experience must be remembered and when they can be forgotten. Towards this goal, we develop a predictive model of human visual event memory and how those memories decay over
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::1d4dcffd03a7760186b73432fe7fd59a
https://doi.org/10.1007/978-3-030-58517-4_14
https://doi.org/10.1007/978-3-030-58517-4_14
Autor:
Nam Wook Kim, Camilo Fosco, Matthew Tancik, Zoya Bylinskii, Patr Sukhum, Yun Bin Zhang, Barry A. McNamara, Anelise Newman
Publikováno v:
Journal of Vision. 20:196
Publikováno v:
Journal of Vision. 20:1005
Publikováno v:
Journal of Vision. 20:414