Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Camille-Sovanneary Gauthier"'
Publikováno v:
ICML 2022-39th International Conference on Machine Learning
ICML 2022-39th International Conference on Machine Learning, Jul 2022, Baltimore, United States. pp.1-31
HAL
ICML 2022-39th International Conference on Machine Learning, Jul 2022, Baltimore, United States. pp.1-31
HAL
International audience; We tackle, in the multiple-play bandit setting, the online ranking problem of assigning $L$ items to $K$ predefined positions on a web page in order to maximize the number of user clicks. We propose a generic algorithm, UniRan
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c3042ce94d22c04407d90d23a114a1f9
https://inria.hal.science/hal-03740981
https://inria.hal.science/hal-03740981
Publikováno v:
ICML 2021-International Conference on Machine Learning
ICML 2021-International Conference on Machine Learning, Jul 2021, Virtual, Canada. pp.3630--3639
HAL
ICML 2021-International Conference on Machine Learning, Jul 2021, Virtual, Canada. pp.3630--3639
HAL
International audience; We tackle the online ranking problem of assigning L items to K positions on a web page in order to maximize the number of user clicks. We propose an original algorithm, easy to implement and with strong theoretical guarantees
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::e947886501abc39755991f6d9e6b0478
https://hal.archives-ouvertes.fr/hal-03256621v2/file/ICML2021.pdf
https://hal.archives-ouvertes.fr/hal-03256621v2/file/ICML2021.pdf
Publikováno v:
IDA 2021-19th International Symposium on Intelligent Data Analysis
IDA 2021-19th International Symposium on Intelligent Data Analysis, Apr 2021, Porto (virtual), Portugal. pp.12
HAL
IDA 2021-19th International Symposium on Intelligent Data Analysis, Apr 2021, Porto (virtual), Portugal. pp.12
HAL
International audience; Multiple-play bandits aim at displaying relevant items at relevant positions on a web page. We introduce a new bandit-based algorithm, PB-MHB, for online recommender systems which uses the Thompson sampling framework with Metr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::f5f177a43e36de7eb63310a5da020479
https://hal.archives-ouvertes.fr/hal-03163763
https://hal.archives-ouvertes.fr/hal-03163763
Publikováno v:
Advances in Intelligent Data Analysis XIX ISBN: 9783030742508
IDA
IDA
Multiple-play bandits aim at displaying relevant items at relevant positions on a web page. We introduce a new bandit-based algorithm, PB-MHB, for online recommender systems which uses the Thompson sampling framework with Metropolis-Hastings approxim
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f12606e18917c7f2f5dc7eca8c7ac33a
https://doi.org/10.1007/978-3-030-74251-5_17
https://doi.org/10.1007/978-3-030-74251-5_17